Maxim van den Berg

University of Amsterdam, Ruhr-University Bochum

Tensor Ranks and Tensor Invariants Seminar — April 11th 2024

Intro

What is a tensor?

Outer product

Tensor basis

Restriction

What is a tensor?

Outer product Tensor basis Restriction

Tensors in the wild

Matrix multiplication
Quantum entanglement
Combinatorics

What is a tensor?

Outer product Tensor basis Restriction

Tensors in the wild

Matrix multiplication
Quantum entanglement
Combinatorics

Group actions on tensors

Diagonal action
Permutation action
(Anti)symmetric tensors

Starting point — Matrices

Starting point — Matrices

Let \mathbb{F} be a field.

Starting point — Matrices

Let \mathbb{F} be a field. We can write a matrix $M \in \mathbb{F}^{n \times m}$ as

Starting point — Matrices

Let \mathbb{F} be a field. We can write a matrix $M \in \mathbb{F}^{n \times m}$ as

$$M = \sum_{i=1}^r v_i w_i^\top$$

for vectors
$$v_i \in \mathbb{F}^n$$
, $w_i \in \mathbb{F}^m$.

Starting point — Matrices

Let \mathbb{F} be a field. We can write a matrix $M \in \mathbb{F}^{n \times m}$ as

for vectors $v_i \in \mathbb{F}^n$, $w_i \in \mathbb{F}^m$.

Starting point — Matrices

Let \mathbb{F} be a field. We can write a matrix $M \in \mathbb{F}^{n \times m}$ as

for vectors $v_i \in \mathbb{F}^n$, $w_i \in \mathbb{F}^m$. Examples: $M = \sum_{i=1}^n \sum_{j=1}^m M_{i,j} \ e_i e_j^{\top}$

Starting point — Matrices

Let \mathbb{F} be a field. We can write a matrix $M \in \mathbb{F}^{n \times m}$ as

$$M = \sum_{i=1}^{r} v_i w_i^{\top} = \begin{bmatrix} \begin{bmatrix} -w_1 - \end{bmatrix} \\ v_1 \\ \end{bmatrix} + \cdots + \begin{bmatrix} v_r \\ v_r \\ \end{bmatrix} = \begin{bmatrix} -w_r - \end{bmatrix}$$

for vectors $v_i \in \mathbb{F}^n$, $w_i \in \mathbb{F}^m$. Examples: $M = \sum_{i=1}^n \sum_{j=1}^m M_{i,j} \ e_i e_j^{\top}$, SVD when $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

Starting point — Matrices

Let \mathbb{F} be a field. We can write a matrix $M \in \mathbb{F}^{n \times m}$ as

$$M = \sum_{i=1}^{r} v_i \otimes w_i = \begin{bmatrix} -w_1 - 1 \\ v_1 \\ 1 \end{bmatrix} + \cdots + \begin{bmatrix} -w_r - 1 \\ v_r \\ 1 \end{bmatrix} = \begin{bmatrix} -w_r - 1 \\ v_r \\ 1 \end{bmatrix}$$

for vectors $v_i \in \mathbb{F}^n$, $w_i \in \mathbb{F}^m$. Examples: $M = \sum_{i=1}^n \sum_{j=1}^m M_{i,j} \ e_i e_j^{\top}$, SVD when $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

Starting point — Matrices

Let \mathbb{F} be a field. We can write a matrix $M \in \mathbb{F}^{n \times m}$ as

$$M = \sum_{i=1}^{r} v_i \otimes w_i = \begin{bmatrix} 1 \\ v_1 \\ 1 \end{bmatrix} + \cdots + \begin{bmatrix} 1 \\ v_r \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ w_r \\ 1 \end{bmatrix}$$

for vectors $v_i \in \mathbb{F}^n$, $w_i \in \mathbb{F}^m$. Examples: $M = \sum_{i=1}^n \sum_{j=1}^m M_{i,j} \ e_i e_j^{\top}$, SVD when $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

$$T =$$

Starting point — Matrices

Let $\mathbb F$ be a field. We can write a matrix $M \in \mathbb F^{n \times m}$ as

$$M = \sum_{i=1}^{r} v_i \otimes w_i = \begin{bmatrix} 1 \\ v_1 \\ 1 \end{bmatrix} + \cdots + \begin{bmatrix} 1 \\ v_r \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ w_r \\ 1 \end{bmatrix}$$

for vectors $v_i \in \mathbb{F}^n$, $w_i \in \mathbb{F}^m$. Examples: $M = \sum_{i=1}^n \sum_{j=1}^m M_{i,j} \ e_i e_j^{\top}$, SVD when $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

$$T = \begin{bmatrix} --w_1 - - v_1 \end{bmatrix}$$

Starting point — Matrices

Let \mathbb{F} be a field. We can write a matrix $M \in \mathbb{F}^{n \times m}$ as

$$M = \sum_{i=1}^{r} v_i \otimes w_i = \begin{bmatrix} 1 \\ v_1 \\ 1 \end{bmatrix} + \cdots + \begin{bmatrix} 1 \\ v_r \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ w_r \\ 1 \end{bmatrix}$$

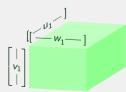
for vectors $v_i \in \mathbb{F}^n$, $w_i \in \mathbb{F}^m$. Examples: $M = \sum_{i=1}^n \sum_{j=1}^m M_{i,j} \ e_i e_j^{\top}$, SVD when $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

$$T = \begin{bmatrix} \begin{bmatrix} 1 \\ v_1 \end{bmatrix} \end{bmatrix}$$

Starting point — Matrices

Let \mathbb{F} be a field. We can write a matrix $M \in \mathbb{F}^{n \times m}$ as

for vectors $v_i \in \mathbb{F}^n$, $w_i \in \mathbb{F}^m$. Examples: $M = \sum_{i=1}^n \sum_{j=1}^m M_{i,j} \ e_i e_j^{\top}$, SVD when $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.



Starting point — Matrices

Let \mathbb{F} be a field. We can write a matrix $M \in \mathbb{F}^{n \times m}$ as

for vectors $v_i \in \mathbb{F}^n$, $w_i \in \mathbb{F}^m$. Examples: $M = \sum_{i=1}^n \sum_{j=1}^m M_{i,j} \ e_i e_j^{\top}$, SVD when $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

$$\begin{bmatrix} \begin{bmatrix} v_1 \\ -v_1 \end{bmatrix} \end{bmatrix} + \cdots + \begin{bmatrix} v_r \\ v_l \end{bmatrix}$$

Charles Nation

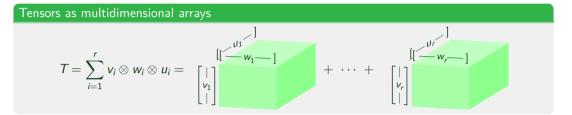
Starting point — Matrices

Let \mathbb{F} be a field. We can write a matrix $M \in \mathbb{F}^{n \times m}$ as

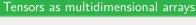
$$M = \sum_{i=1}^{r} v_i \otimes w_i = \begin{bmatrix} 1 \\ v_1 \\ 1 \end{bmatrix} + \cdots + \begin{bmatrix} 1 \\ v_r \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ v_r \\ 1 \end{bmatrix}$$

for vectors $v_i \in \mathbb{F}^n$, $w_i \in \mathbb{F}^m$. Examples: $M = \sum_{i=1}^n \sum_{j=1}^m M_{i,j} \ e_i e_j^{\top}$, SVD when $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

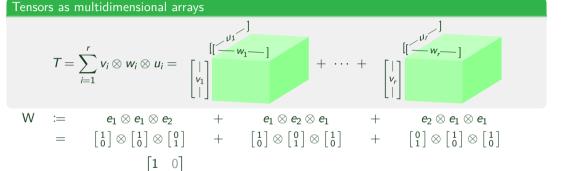
$$T = \sum_{i=1}^{r} v_i \otimes w_i \otimes u_i = \begin{bmatrix} 1 \\ v_1 \\ 1 \end{bmatrix} + \cdots + \begin{bmatrix} 1 \\ v_r \\ 1 \end{bmatrix}$$



Tensors as multidimensional arrays $T = \sum_{i=1}^{r} v_i \otimes w_i \otimes u_i = \begin{bmatrix} 1 \\ v_1 \end{bmatrix}$ W $e_1 \otimes e_1 \otimes e_2$ $+ \qquad e_1 \otimes e_2 \otimes e_1 \qquad + \qquad$ $e_2 \otimes e_1 \otimes e_1$



$$T = \sum_{i=1}^{r} v_i \otimes w_i \otimes u_i = \begin{bmatrix} v_1 & v_1 & v_2 & v_3 & v_4 & v_4$$



$$T = \sum_{i=1}^{r} v_i \otimes w_i \otimes u_i = \begin{bmatrix} 1 \\ v_1 \\ 1 \end{bmatrix} + \cdots + \begin{bmatrix} 1 \\ v_1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$+$$
 $\begin{bmatrix} 0\\1\end{bmatrix} \otimes$

$$\begin{bmatrix} 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \end{bmatrix}$$

$$T = \sum_{i=1}^{r} v_i \otimes w_i \otimes u_i = \begin{bmatrix} v_1 \\ v_1 \\ v_1 \end{bmatrix} + \cdots + \begin{bmatrix} v_r \\ v_r \end{bmatrix}$$

$$T = \sum_{i=1}^{r} v_i \otimes w_i \otimes u_i = \begin{bmatrix} v_1 \\ v_1 \\ v_1 \end{bmatrix} + \cdots + \begin{bmatrix} v_r \\ v_r \\ v_r \end{bmatrix}$$

First examples — The W and diagonal tensors

$$T = \sum_{i=1}^{r} v_i \otimes w_i \otimes u_i = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} + \cdots + \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{array}{lllll} W & \coloneqq & e_{1} \otimes e_{1} \otimes e_{2} & + & e_{1} \otimes e_{2} \otimes e_{1} & + & e_{2} \otimes e_{1} \otimes e_{1} \\ & = & \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} & + & \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} & + & \begin{bmatrix} 0 \\ 0 \end{bmatrix} & +$$

Let V, W, U be finite dimensional vector spaces with respective bases $\{v_i\}_i, \{w_j\}_j, \{u_k\}_k$.

Let V, W, U be finite dimensional vector spaces with respective bases $\{v_i\}_i, \{w_j\}_j, \{u_k\}_k$.

Definition — Abstract 3-tensor space (Straightforward to generalize to k-tensors)

We define a **tensor vector space** $V \otimes W \otimes U$ as the linear span of the (abstract) elements

$$\{v_i\otimes w_j\otimes u_k\}_{i,j,k}$$

Let V, W, U be finite dimensional vector spaces with respective bases $\{v_i\}_i, \{w_j\}_j, \{u_k\}_k$.

<u>Definition — Abstract 3-tensor space</u> (Straightforward to generalize to k-tensors)

We define a **tensor vector space** $V \otimes W \otimes U$ as the linear span of the (abstract) elements

$$\{v_i\otimes w_j\otimes u_k\}_{i,j,k}$$

together with a map $V \times W \times U$: $(v, w, u) \mapsto v \otimes w \otimes u$ that is multilinear:

Let V, W, U be finite dimensional vector spaces with respective bases $\{v_i\}_i, \{w_j\}_j, \{u_k\}_k$.

<u>Definition</u> — Abstract 3-tensor space (Straightforward to generalize to k-tensors)

We define a **tensor vector space** $V \otimes W \otimes U$ as the linear span of the (abstract) elements

$$\{v_i\otimes w_j\otimes u_k\}_{i,j,k}$$

together with a map $V \times W \times U$: $(v, w, u) \mapsto v \otimes w \otimes u$ that is multilinear:

• Multilinearity I: $(v + v') \otimes w \otimes u = v \otimes w \otimes u + v' \otimes w \otimes u$

Let V, W, U be finite dimensional vector spaces with respective bases $\{v_i\}_i, \{w_j\}_j, \{u_k\}_k$.

<u>Definition</u> — Abstract 3-tensor space (Straightforward to generalize to k-tensors)

We define a **tensor vector space** $V \otimes W \otimes U$ as the linear span of the (abstract) elements

$$\{v_i\otimes w_j\otimes u_k\}_{i,j,k}$$

together with a map $V \times W \times U$: $(v, w, u) \mapsto v \otimes w \otimes u$ that is multilinear:

- Multilinearity I: $(v+v')\otimes w\otimes u=v\otimes w\otimes u+v'\otimes w\otimes u$
- Multilinearity II: $(\alpha v) \otimes w \otimes u = \alpha (v \otimes w \otimes u)$ for all $\alpha \in \mathbb{F}$.

Let V, W, U be finite dimensional vector spaces with respective bases $\{v_i\}_i, \{w_i\}_i, \{u_k\}_k$.

Definition — Abstract 3-tensor space (Straightforward to generalize to k-tensors)

We define a **tensor vector space** $V \otimes W \otimes U$ as the linear span of the (abstract) elements

$$\{v_i\otimes w_j\otimes u_k\}_{i,j,k}$$

together with a map $V \times W \times U$: $(v, w, u) \mapsto v \otimes w \otimes u$ that is multilinear:

- **Multilinearity I:** $(v+v') \otimes w \otimes u = v \otimes w \otimes u + v' \otimes w \otimes u$
- Multilinearity II: $(\alpha v) \otimes w \otimes u = \alpha (v \otimes w \otimes u)$ for all $\alpha \in \mathbb{F}$.

and similarly for the other components.

$$(lpha extbf{v}) \otimes extbf{w} \otimes extbf{u} = lpha (extbf{v} \otimes extbf{w} \otimes extbf{u})$$
 for all $lpha \in \mathbb{F}$

Let V, W, U be finite dimensional vector spaces with respective bases $\{v_i\}_i, \{w_j\}_j, \{u_k\}_k$.

<u>Definition</u> — Abstract 3-tensor space (Straightforward to generalize to k-tensors)

We define a **tensor vector space** $V \otimes W \otimes U$ as the linear span of the (abstract) elements

$$\{v_i\otimes w_j\otimes u_k\}_{i,j,k}$$

together with a map $V \times W \times U$: $(v, w, u) \mapsto v \otimes w \otimes u$ that is multilinear:

- Multilinearity I: $(v + v') \otimes w \otimes u = v \otimes w \otimes u + v' \otimes w \otimes u$
- Multilinearity II: $(\alpha v) \otimes w \otimes u = \alpha (v \otimes w \otimes u)$ for all $\alpha \in \mathbb{F}$.

and similarly for the other components.

It is easy to check the outer product satisfies this!

You could also define:

Another example — Kronecker product

Given column vectors $v \in V$, $w \in W$. Define their **Kronecker product** by

$$v \boxtimes w = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \boxtimes w \coloneqq \begin{bmatrix} a_1 w \\ -a_2 w \\ -\vdots \\ -a_n w \end{bmatrix} \in V \boxtimes W$$

Kronecker product

You could also define:

Another example — Kronecker product

Given column vectors $v \in V$, $w \in W$. Define their **Kronecker product** by

$$v \boxtimes w = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \boxtimes w \coloneqq \begin{bmatrix} a_1 w \\ - \\ a_2 w \\ - \\ \vdots \\ - \\ a_n w \end{bmatrix} \in V \boxtimes W$$

i.e. replacing each entry of v with a scaled copy of w, resulting in one very tall vector.

You could also define:

Another example — Kronecker product

Given column vectors $v \in V$, $w \in W$. Define their **Kronecker product** by

$$v \boxtimes w = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \boxtimes w \coloneqq \begin{bmatrix} a_1 w \\ - \\ a_2 w \\ - \\ \vdots \\ - \\ a_n w \end{bmatrix} \in V \boxtimes W$$

i.e. replacing each entry of v with a scaled copy of w, resulting in one very tall vector.

This also sasisfies the abstract definition!

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore)

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore)

Let $A: V \to V'$, $B: W \to W'$, $C: U \to U'$ be linear maps.

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore) Let $A: V \to V'$, $B: W \to W'$, $C: U \to U'$ be linear maps.

Definition — Applying linear maps

Define $A \otimes B \otimes C$

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore) Let $A: V \to V'$, $B: W \to W'$, $C: U \to U'$ be linear maps.

Definition — Applying linear maps

Define $A \otimes B \otimes C$: $V \otimes W \otimes U \rightarrow V' \otimes W' \otimes U'$ by

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore) Let $A: V \to V'$. $B: W \to W'$. $C: U \to U'$ be linear maps.

Define
$$A \otimes B \otimes C$$
: $V \otimes W \otimes U \rightarrow V' \otimes W' \otimes U'$ by

$$(A \otimes B \otimes C)(v \otimes w \otimes u) := (Av) \otimes (Bw) \otimes (Cu)$$

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore) Let $A: V \to V'$. $B: W \to W'$. $C: U \to U'$ be linear maps.

Define
$$A \otimes B \otimes C$$
: $V \otimes W \otimes U \rightarrow V' \otimes W' \otimes U'$ by
$$(A \otimes B \otimes C)(v \otimes w \otimes u) := (Av) \otimes (Bw) \otimes (Cu)$$

$$(A \otimes B \otimes C)T := \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore) Let $A: V \to V'$. $B: W \to W'$, $C: U \to U'$ be linear maps.

Definition — Applying linear maps

Define
$$A \otimes B \otimes C$$
: $V \otimes W \otimes U \rightarrow V' \otimes W' \otimes U'$ by
$$(A \otimes B \otimes C)(v \otimes w \otimes u) := (Av) \otimes (Bw) \otimes (Cu)$$

$$(A \otimes B \otimes C)T := \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

Example: $\langle 3 \rangle := \sum_{i=1}^{3} e_i \otimes e_i \otimes e_i \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$. Then

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore) Let $A: V \to V'$, $B: W \to W'$, $C: U \to U'$ be linear maps.

Definition — Applying linear maps

Define $A \otimes B \otimes C$: $V \otimes W \otimes U \rightarrow V' \otimes W' \otimes U'$ by $(A \otimes B \otimes C)(v \otimes w \otimes u) := (Av) \otimes (Bw) \otimes (Cu)$ $(A \otimes B \otimes C)T \qquad := \sum Av_i \otimes Bw_i \otimes Cu_i$

Example: $\langle 3 \rangle := \sum_{i=1}^3 e_i \otimes e_i \otimes e_i \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$. Then $\left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \langle 3 \rangle$

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore) Let $A: V \to V'$. $B: W \to W'$, $C: U \to U'$ be linear maps.

Define
$$A \otimes B \otimes C$$
: $V \otimes W \otimes U \rightarrow V' \otimes W' \otimes U'$ by
$$(A \otimes B \otimes C)(v \otimes w \otimes u) := (Av) \otimes (Bw) \otimes (Cu)$$
$$(A \otimes B \otimes C)T := \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

Example:
$$\langle 3 \rangle := \sum_{i=1}^{3} e_i \otimes e_i \otimes e_i \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$$
. Then $\left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \langle 3 \rangle = \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) (e_1 \otimes e_1 \otimes e_1) +$

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore) Let $A: V \to V'$. $B: W \to W'$. $C: U \to U'$ be linear maps.

Define
$$A \otimes B \otimes C$$
: $V \otimes W \otimes U \rightarrow V' \otimes W' \otimes U'$ by
$$(A \otimes B \otimes C)(v \otimes w \otimes u) := (Av) \otimes (Bw) \otimes (Cu)$$
$$(A \otimes B \otimes C)T := \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

Example:
$$\langle 3 \rangle := \sum_{i=1}^{3} e_{i} \otimes e_{i} \otimes e_{i} \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$$
. Then
$$\left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \langle 3 \rangle = \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) (e_{1} \otimes e_{1} \otimes e_{1}) + \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \right) (e_{2} \otimes e_{2} \otimes e_{2}) + \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) (e_{3} \otimes e_{3} \otimes e_{3})$$

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore) Let $A: V \to V'$. $B: W \to W'$. $C: U \to U'$ be linear maps.

Define
$$A \otimes B \otimes C$$
: $V \otimes W \otimes U \rightarrow V' \otimes W' \otimes U'$ by
$$(A \otimes B \otimes C)(v \otimes w \otimes u) := (Av) \otimes (Bw) \otimes (Cu)$$
$$(A \otimes B \otimes C)T := \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

Example:
$$\langle 3 \rangle := \sum_{i=1}^{3} e_{i} \otimes e_{i} \otimes e_{i} \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$$
. Then
$$\left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \langle 3 \rangle = \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) (e_{1} \otimes e_{1} \otimes e_{1}) + \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) (e_{2} \otimes e_{2} \otimes e_{2}) + \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) (e_{3} \otimes e_{3} \otimes e_{3}) = \begin{bmatrix} 0 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 & 0 \end{bmatrix} +$$

211 to transform tensors Emedi operations

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore) Let $A: V \to V'$, $B: W \to W'$, $C: U \to U'$ be linear maps.

Define
$$A \otimes B \otimes C$$
: $V \otimes W \otimes U \rightarrow V' \otimes W' \otimes U'$ by
$$(A \otimes B \otimes C)(v \otimes w \otimes u) := (Av) \otimes (Bw) \otimes (Cu)$$
$$(A \otimes B \otimes C)T := \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

Example:
$$\langle 3 \rangle := \sum_{i=1}^{3} e_i \otimes e_i \otimes e_i \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$$
. Then $\left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \right) \langle 3 \rangle = \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \right) (e_1 \otimes e_1 \otimes e_1) + \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \right) (e_2 \otimes e_2 \otimes e_2) + \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) (e_3 \otimes e_3 \otimes e_3) = \begin{bmatrix} 0 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 & 0 & 0 \end{bmatrix}$

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore) Let $A: V \to V'$, $B: W \to W'$, $C: U \to U'$ be linear maps.

Define
$$A \otimes B \otimes C$$
: $V \otimes W \otimes U \rightarrow V' \otimes W' \otimes U'$ by
$$(A \otimes B \otimes C)(v \otimes w \otimes u) := (Av) \otimes (Bw) \otimes (Cu)$$
$$(A \otimes B \otimes C)T := \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

$$\begin{split} \textbf{Example:} \ \langle 3 \rangle &\coloneqq \sum_{i=1}^3 e_i \otimes e_i \otimes e_i \, \in \, \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3 \,. \ \textbf{Then} \\ & \left(\left[\begin{smallmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right] \right) \langle 3 \rangle = \left(\left[\begin{smallmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right] \right) (e_1 \otimes e_1 \otimes e_1) \\ & + \left(\left[\begin{smallmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right] \right) (e_2 \otimes e_2 \otimes e_2) \\ & + \left(\left[\begin{smallmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right] \right) (e_3 \otimes e_3 \otimes e_3) \\ & = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right] \end{aligned}$$

Take a 3-tensor $T = \sum_i v_i \otimes w_i \otimes u_i \in V \otimes W \otimes U$. (note: not basis elements anymore) Let $A: V \to V'$. $B: W \to W'$, $C: U \to U'$ be linear maps.

Define
$$A \otimes B \otimes C$$
: $V \otimes W \otimes U \rightarrow V' \otimes W' \otimes U'$ by
$$(A \otimes B \otimes C)(v \otimes w \otimes u) := (Av) \otimes (Bw) \otimes (Cu)$$
$$(A \otimes B \otimes C)T := \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

Example:
$$\langle 3 \rangle := \sum_{i=1}^{3} e_i \otimes e_i \otimes e_i \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$$
. Then
$$\left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \langle 3 \rangle = \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \right) \left(e_1 \otimes e_1 \otimes e_1 \right) \\ + \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \left(e_2 \otimes e_2 \otimes e_2 \right) \\ + \left(\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \left(e_3 \otimes e_3 \otimes e_3 \right) \\ = \begin{bmatrix} 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \left(e_1 \otimes e_1 \otimes e_1 \otimes e_1 \otimes e_1 \right)$$

Definition — Applying linear maps

Let $A: V \rightarrow V', \quad B: W \rightarrow W', \quad C: U \rightarrow U'$ be linear maps. Then

$$(A \otimes B \otimes C) \sum_{i} v_{i} \otimes w_{i} \otimes u_{i} = \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

Definition — Applying linear maps

Let $A: V \rightarrow V', \quad B: W \rightarrow W', \quad C: U \rightarrow U'$ be linear maps. Then

$$(A \otimes B \otimes C) \sum_{i} v_{i} \otimes w_{i} \otimes u_{i} = \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

Take 3-tensors $T \in V \otimes W \otimes U$ and $S \in V' \otimes W' \otimes U'$

Definition — Applying linear maps

Let $A: V \to V'$, $B: W \to W'$, $C: U \to U'$ be linear maps. Then

$$(A \otimes B \otimes C) \sum_{i} v_{i} \otimes w_{i} \otimes u_{i} = \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

Take 3-tensors $T \in V \otimes W \otimes U$ and $S \in V' \otimes W' \otimes U'$

Definition — Restriction

We say T restricts to S, and write $T \ge S$, whenever there exists linear maps A, B, C such that

$$(A \otimes B \otimes C)T = S$$

Definition — Applying linear maps

Let $A: V \to V'$, $B: W \to W'$, $C: U \to U'$ be linear maps. Then

$$(A \otimes B \otimes C) \sum_{i} v_{i} \otimes w_{i} \otimes u_{i} = \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

Take 3-tensors $T \in V \otimes W \otimes U$ and $S \in V' \otimes W' \otimes U'$

Definition — Restriction

We say T restricts to S, and write $T \ge S$, whenever there exists linear maps A, B, C such that

$$(A \otimes B \otimes C)T = S$$

Example: the previous example shows $\langle 3 \rangle \geq W$.

Definition — Applying linear maps

Let $A: V \to V'$, $B: W \to W'$, $C: U \to U'$ be linear maps. Then

$$(A \otimes B \otimes C) \sum_{i} v_{i} \otimes w_{i} \otimes u_{i} = \sum_{i} Av_{i} \otimes Bw_{i} \otimes Cu_{i}$$

Take 3-tensors $T \in V \otimes W \otimes U$ and $S \in V' \otimes W' \otimes U'$

Definition — Restriction

We say T restricts to S, and write $T \ge S$, whenever there exists linear maps A, B, C such that

$$(A \otimes B \otimes C)T = S$$

Example: the previous example shows $\langle 3 \rangle \geq W$.

Remark: Restriction on matrices (2-tensors) is left-right multiplication, since

$$(A \otimes B)(v \otimes w) = Av \otimes Bw = Av(Bw)^{\top} = A(vw^{\top})B^{\top}.$$

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

Standard algorithm: $\mathcal{O}(n^3)$.

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

Standard algorithm: $\mathcal{O}(n^3)$. Best bounds: $\mathcal{O}(n^{\omega})$ with $\omega \in [2, 2.371552]$.

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

Standard algorithm: $\mathcal{O}(n^3)$. **Best bounds:** $\mathcal{O}(n^\omega)$ with $\omega \in [2, 2.371552]$.

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?

Consider bilinear maps $V \times W \rightarrow U$

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

Standard algorithm: $\mathcal{O}(n^3)$. **Best bounds:** $\mathcal{O}(n^\omega)$ with $\omega \in [2, 2.371552]$.

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?

Consider bilinear maps $V \times W \rightarrow U$, with $\{v_i\}_i$, $\{w_j\}_j$ and $\{u_k\}_k$ bases.

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

Standard algorithm: $\mathcal{O}(n^3)$. **Best bounds:** $\mathcal{O}(n^\omega)$ with $\omega \in [2, 2.371552]$.

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?

Consider bilinear maps $V \times W \rightarrow U$, with $\{v_i\}_i$, $\{w_j\}_j$ and $\{u_k\}_k$ bases. Claim:

$$\{\text{bilinear maps } V \times W \to U\} \stackrel{\sim}{\longrightarrow} V^* \otimes W^* \otimes U$$
:

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

Standard algorithm: $\mathcal{O}(n^3)$. **Best bounds:** $\mathcal{O}(n^\omega)$ with $\omega \in [2, 2.371552]$.

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?

Consider bilinear maps $V \times W \rightarrow U$, with $\{v_i\}_i$, $\{w_j\}_j$ and $\{u_k\}_k$ bases. Claim:

$$\{\text{bilinear maps } V \times W \to U\} \stackrel{\sim}{\longrightarrow} V^* \otimes W^* \otimes U$$
:

• Bilinearity gives
$$f(v, w) = f\left(\sum_{i} (v_i^* v) v_i, \sum_{j} (w_j^* w) w_i\right)$$

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

Standard algorithm: $\mathcal{O}(n^3)$. **Best bounds:** $\mathcal{O}(n^\omega)$ with $\omega \in [2, 2.371552]$.

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?

Consider bilinear maps $V \times W \rightarrow U$, with $\{v_i\}_i$, $\{w_j\}_j$ and $\{u_k\}_k$ bases. Claim:

$$\{\text{bilinear maps } V \times W \rightarrow U\} \stackrel{\sim}{\longrightarrow} V^* \otimes W^* \otimes U$$
:

• Bilinearity gives
$$f(v, w) = f\left(\sum_{i} (v_i^* v) v_i, \sum_{j} (w_j^* w) w_i\right) = \sum_{i,j} (v_i^* v) (w_j^* w) f(v_i, w_i)$$

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

Standard algorithm: $\mathcal{O}(n^3)$. **Best bounds:** $\mathcal{O}(n^\omega)$ with $\omega \in [2, 2.371552]$.

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?

Consider bilinear maps $V \times W \rightarrow U$, with $\{v_i\}_i$, $\{w_j\}_j$ and $\{u_k\}_k$ bases. Claim:

Proposition — Bilinear map/Tensor equivalence

 $\{\text{bilinear maps } V \times W \rightarrow U\} \stackrel{\sim}{\longrightarrow} V^* \otimes W^* \otimes U$:

• Bilinearity gives
$$f(v, w) = f\left(\sum_{i} (v_i^* v) v_i, \sum_{i} (w_j^* w) w_i\right) = \sum_{i,j} (v_i^* v) (w_j^* w) f(v_i, w_i)$$

• Then we write
$$f(v_i, w_i) = \sum_k \left(\underbrace{u_k^* f(v_i, w_i)}_k\right) u_k$$

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

Standard algorithm: $\mathcal{O}(n^3)$. **Best bounds:** $\mathcal{O}(n^\omega)$ with $\omega \in [2, 2.371552]$.

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?

Consider bilinear maps $V \times W \rightarrow U$, with $\{v_i\}_i$, $\{w_j\}_j$ and $\{u_k\}_k$ bases. Claim:

$$\{\text{bilinear maps } V \times W \rightarrow U\} \stackrel{\sim}{\longrightarrow} V^* \otimes W^* \otimes U$$
:

• Bilinearity gives
$$f(v, w) = f\left(\sum_{i} (v_i^* v) v_i, \sum_{j} (w_j^* w) w_i\right) = \sum_{i,j} (v_i^* v) (w_j^* w) f(v_i, w_i)$$

• Then we write
$$f(v_i, w_i) = \sum_k \left(\underbrace{u_k^* f(v_i, w_i)}_{i=1, i, j, k} \right) u_k$$

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

Standard algorithm: $\mathcal{O}(n^3)$. **Best bounds:** $\mathcal{O}(n^\omega)$ with $\omega \in [2, 2.371552]$.

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?

Consider bilinear maps $V \times W \rightarrow U$, with $\{v_i\}_i$, $\{w_j\}_j$ and $\{u_k\}_k$ bases. Claim:

Proposition — Bilinear map/Tensor equivalence

 $\{\text{bilinear maps } V \times W \rightarrow U\} \stackrel{\sim}{\longrightarrow} V^* \otimes W^* \otimes U$:

• Bilinearity gives
$$f(v, w) = f\left(\sum_{i} (v_i^* v) v_i, \sum_{j} (w_j^* w) w_i\right) = \sum_{i,j} (v_i^* v) (w_j^* w) f(v_i, w_i)$$

• Then we write
$$f(v_i, w_i) = \sum_k \left(\underbrace{u_k^* f(v_i, w_i)}_{i \neq j \neq k}\right) u_k \implies f(v, w) = \sum_{i,j,k} t_{i,j,k} (v_i^* v) (w_j^* w) u_k$$

$$\mathsf{MM}_n \colon \mathbb{F}^{n \times n} \times \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$$

Standard algorithm: $\mathcal{O}(n^3)$. **Best bounds:** $\mathcal{O}(n^\omega)$ with $\omega \in [2, 2.371552]$.

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do $n \times n$ matrix multiplication?

Consider bilinear maps $V \times W \rightarrow U$, with $\{v_i\}_i$, $\{w_j\}_j$ and $\{u_k\}_k$ bases. Claim:

$$\left\{\text{bilinear maps } V \times W \to U\right\} \stackrel{\sim}{\longrightarrow} V^* \otimes W^* \otimes U \colon \quad f \mapsto \sum_{i,j,k} t_{i,j,k} \ v_i^* \otimes w_j^* \otimes u_k$$

• Bilinearity gives
$$f(v, w) = f\left(\sum_{i} (v_i^* v) v_i, \sum_{j} (w_j^* w) w_i\right) = \sum_{i,j} (v_i^* v) (w_j^* w) f(v_i, w_i)$$

• Then we write
$$f(v_i, w_i) = \sum_k \left(\underbrace{u_k^* f(v_i, w_i)}_{i \neq j}\right) u_k \implies f(v, w) = \sum_{i,j,k} t_{i,j,k} (v_i^* v) (w_j^* w) u_k$$

Matrix multiplication as a tensor

$$\mathsf{MM}_n \in (\mathbb{F}^{n \times n})^* \otimes (\mathbb{F}^{n \times n})^* \otimes \mathbb{F}^{n \times n}$$

$$\mathsf{MM}_n \in (\mathbb{F}^{n \times n})^* \otimes (\mathbb{F}^{n \times n})^* \otimes \mathbb{F}^{n \times n}$$

Take double indices (i, i'), (j, j'), (k, k'),

$$\mathsf{MM}_n \in (\mathbb{F}^{n \times n})^* \otimes (\mathbb{F}^{n \times n})^* \otimes \mathbb{F}^{n \times n}$$

$$i'$$

$$i = E_{3,2}$$

$$\mathsf{MM}_n \in (\mathbb{F}^{n \times n})^* \otimes (\mathbb{F}^{n \times n})^* \otimes \mathbb{F}^{n \times n}$$

$$\begin{array}{c|c}
i' \\
i & 1
\end{array} = E_{3,2}$$

$$\mathsf{MM}_n(E_{i,i'},E_{j,j'})$$

$$\mathsf{MM}_n \in (\mathbb{F}^{n \times n})^* \otimes (\mathbb{F}^{n \times n})^* \otimes \mathbb{F}^{n \times n}$$

$$\begin{array}{c|c}
i' \\
i & 1
\end{array} = E_{3,2}$$

$$\mathsf{MM}_n(E_{i,i'},E_{j,j'})=E_{i,i'}E_{j,j'}$$

$$\mathsf{MM}_n \in (\mathbb{F}^{n \times n})^* \otimes (\mathbb{F}^{n \times n})^* \otimes \mathbb{F}^{n \times n}$$

$$\begin{array}{c|c}
i' \\
i & 1
\end{array} = E_{3,2}$$

$$\mathsf{MM}_n(E_{i,i'}, E_{j,j'}) = E_{i,i'}E_{j,j'} = e_i(e_{i'}^\top e_j)e_{j'}^\top$$

$$\mathsf{MM}_n \in (\mathbb{F}^{n \times n})^* \otimes (\mathbb{F}^{n \times n})^* \otimes \mathbb{F}^{n \times n}$$

$$\begin{array}{c|c}
i' \\
i & \\
i & \\
\end{array} = E_{3,i}$$

$$\mathsf{MM}_n\big(E_{i,i'},E_{j,j'}\big) = E_{i,i'}E_{j,j'} = e_i\big(e_{i'}^\top e_j\big)e_{j'}^\top = \begin{cases} E_{i,j'} & \text{if } i' = j\\ 0 & \text{else} \end{cases}$$

$$\mathsf{MM}_n \in (\mathbb{F}^{n \times n})^* \otimes (\mathbb{F}^{n \times n})^* \otimes \mathbb{F}^{n \times n}$$

$$i'$$

$$i = E_{3,3}$$

$$\mathsf{MM}_n\big(E_{i,i'},E_{j,j'}\big) = E_{i,i'}E_{j,j'} = e_i\big(e_{i'}^\top e_j\big)e_{j'}^\top = \begin{cases} E_{i,j'} & \text{if } i' = j \\ 0 & \text{else} \end{cases}$$

$$\textit{Example } (\textit{n} = 2) \text{: } \mathsf{MM}_2\big(\left[\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right]\big) = \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right] = \mathsf{MM}_2\big(\left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}\right]\big)$$

$$\mathsf{MM}_n \in (\mathbb{F}^{n \times n})^* \otimes (\mathbb{F}^{n \times n})^* \otimes \mathbb{F}^{n \times n}$$

Take double indices (i, i'), (j, j'), (k, k'),and the standard matrix basis $E_{i.i'} \coloneqq e_i e_{i'}^{\top}$.

$$\begin{array}{c|c}
i' \\
i \\
i \\
1
\end{array} = E_{3,2}$$

$$\mathsf{MM}_n\big(E_{i,i'},E_{j,j'}\big) = E_{i,i'}E_{j,j'} = e_i\big(e_{i'}^\top e_j\big)e_{j'}^\top = \begin{cases} E_{i,j'} & \text{if } i' = j \\ 0 & \text{else} \end{cases}$$

$$\textit{Example } (n=2) \text{: } \mathsf{MM}_2\big(\left[\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right]\big) = \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right] = \mathsf{MM}_2\big(\left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}\right]\big)$$

So

$$t_{(i,i'),(j,j'),(k,k')} \coloneqq E_{k,k'}^* \Big(\mathsf{MM}_n \big(E_{i,i'}, E_{j,j'} \big) \Big)$$

$$\mathsf{MM}_n \in (\mathbb{F}^{n \times n})^* \otimes (\mathbb{F}^{n \times n})^* \otimes \mathbb{F}^{n \times n}$$

$$\begin{array}{c|c}
i'\\
i\\
i\\
\end{array} = E_{3,i}$$

$$\mathsf{MM}_nig(E_{i,i'},E_{j,j'}ig) = E_{i,i'}E_{j,j'} = e_iig(e_{i'}^ op e_jig)e_{j'}^ op = egin{cases} E_{i,j'} & \text{if } i' = j \ 0 & \text{else} \end{cases}$$

Example
$$(n = 2)$$
: $\mathsf{MM}_2\left(\left[\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right]\right) = \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right] = \mathsf{MM}_2\left(\left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}\right]\right)$

So
$$t_{(i,i'),(j,j'),(k,k')} \coloneqq E_{k,k'}^* \left(\mathsf{MM}_n \big(E_{i,i'}, E_{j,j'} \big) \right)$$
$$= \begin{cases} 1 & \text{if } i = k, i' = j, j' = k' \\ 0 & \text{else} \end{cases}$$

$$\mathsf{MM}_n \in (\mathbb{F}^{n imes n})^* \otimes (\mathbb{F}^{n imes n})^* \otimes \mathbb{F}^{n imes n}$$

(k, k')slice

Take double indices (i, i'), (j, j'), (k, k'),and the standard matrix basis $E_{i,i'} := e_i e_{i'}^{\top}$.

$$\begin{array}{c|c}
i' \\
i \\
i \\
1
\end{array} = E_{3,2}$$

$$(1,1): \left(\left[\begin{array}{c} \\ \end{array} \right], \right.$$

$$\mathsf{MM}_n\big(E_{i,i'},E_{j,j'}\big) = E_{i,i'}E_{j,j'} = e_i\big(e_{i'}^\top e_j\big)e_{j'}^\top = \begin{cases} E_{i,j'} & \text{if } i' = j \\ 0 & \text{else} \end{cases}$$

$$\textit{Example}\;(n=2) \colon \mathsf{MM}_2\big(\left[\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right]\big) = \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right] = \mathsf{MM}_2\big(\left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}\right]\big)$$

So

$$t_{(i,i'),(j,j'),(k,k')} \coloneqq E_{k,k'}^* \left(\mathsf{MM}_n(E_{i,i'}, E_{j,j'}) \right)$$

$$= \begin{cases} 1 & \text{if } i = k, i' = j, j' = k' \\ 0 & \text{else} \end{cases}$$

$$\mathsf{MM}_n \in (\mathbb{F}^{n \times n})^* \otimes (\mathbb{F}^{n \times n})^* \otimes \mathbb{F}^{n \times n}$$

$$\begin{array}{c|c}
i' \\
i \\
i \\
1
\end{array} = E_{3,2}$$

$$= E_{3,2}$$

$$(k, k')$$
 slice

$$\mathsf{MM}_nig(E_{i,i'},E_{j,j'}ig) = E_{i,i'}E_{j,j'} = e_iig(e_{i'}^ op e_jig)e_{j'}^ op = egin{cases} E_{i,j'} & ext{ if } i'=j \ 0 & ext{ else} \end{cases}$$

$$(1,2): \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

$$\textit{Example}\;(n=2) \colon \mathsf{MM}_2\big(\left[\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right]\big) = \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right] = \mathsf{MM}_2\big(\left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}\right]\big)$$

$$t_{(i,i'),(j,j'),(k,k')} := E_{k,k'}^* \left(\mathsf{MM}_n \left(E_{i,i'}, E_{j,j'} \right) \right)$$

$$= \begin{cases} 1 & \text{if } i = k, i' = j, j' = k' \\ 0 & \text{else} \end{cases}$$

$$\mathsf{MM}_n \in (\mathbb{F}^{n \times n})^* \otimes (\mathbb{F}^{n \times n})^* \otimes \mathbb{F}^{n \times n}$$

(k, k')

slice

$$= E_{3,2}$$

$$(1,1): \left(\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \right.$$

$$\mathsf{MM}_nig(E_{i,i'},E_{j,j'}ig) = E_{i,i'}E_{j,j'} = e_iig(e_{i'}^ op e_jig)e_{j'}^ op = egin{cases} E_{i,j'} & ext{if } i'=j \ 0 & ext{else} \end{cases}$$

$$(1,2): \begin{bmatrix} 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

$$\textit{Example}\; (n=2) \colon \mathsf{MM}_2\big(\left[\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right]\big) = \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right] = \mathsf{MM}_2\big(\left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}\right]\big)$$

$$(2,1): \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix},$$

$$t_{(i,i'),(j,j'),(k,k')} \coloneqq E_{k,k'}^* \left(\mathsf{MM}_n(E_{i,i'}, E_{j,j'}) \right)$$

$$= \begin{cases} 1 & \text{if } i = k, i' = j, j' = k' \\ 0 & \text{else} \end{cases}$$

$$(2,2): \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\label{eq:Question: of the Question} \textbf{Question:} \ \ \mathsf{How} \ \ \mathsf{many} \ \ \mathsf{multiplications} \ \ \mathsf{do} \ \ \mathsf{we} \ \ \mathsf{need?}$

ntro Part I: What is a tensor? Part II: Matrix multiplication Quantum entanglement Combinatorics (Sub)rank Part III: Group actions on tensors

Bilinear complexity

Question: How many multiplications do we need?

Idea: Compare with a bilinear map for which we know.

Question: How many multiplications do we need?

Idea: Compare with a bilinear map for which we know.

Question: How many multiplications do we need?

Idea: Compare with a bilinear map for which we know.

$$f_r(x,y) := \begin{bmatrix} x_1y_1 \\ \vdots \\ x_ry_r \end{bmatrix}$$

Question: How many multiplications do we need?

Idea: Compare with a bilinear map for which we know.

$$f_r(x,y) := \begin{bmatrix} x_1y_1 \\ \vdots \\ x_ry_r \end{bmatrix} = \sum_{i=1}^r x_iy_i e_i$$

Question: How many multiplications do we need?

Idea: Compare with a bilinear map for which we know.

$$f_r(x,y) := \begin{vmatrix} x_1y_1 \\ \vdots \\ x_ry_r \end{vmatrix} = \sum_{i=1}^r x_iy_ie_i \qquad \longleftrightarrow \qquad \langle r \rangle := \sum_{i=1}^r e_i \otimes e_i \otimes e_i \quad \in \mathbb{F}^r \otimes \mathbb{F}^r \otimes \mathbb{F}^r$$

Question: How many multiplications do we need?

Idea: Compare with a bilinear map for which we know.

Define the diagonal bilinear map / tensor as

$$f_r(x,y) := \begin{vmatrix} x_1y_1 \\ \vdots \\ x_ry_r \end{vmatrix} = \sum_{i=1}^r x_iy_ie_i \qquad \longleftrightarrow \qquad \langle r \rangle := \sum_{i=1}^r e_i \otimes e_i \otimes e_i \quad \in \mathbb{F}^r \otimes \mathbb{F}^r \otimes \mathbb{F}^r$$

Fact: if we have a restriction $MM_n \leq \langle r \rangle$, then MM_n needs $\leq r$ multiplications.

Question: How many multiplications do we need?

Idea: Compare with a bilinear map for which we know.

Define the diagonal bilinear map / tensor as

$$f_r(x,y) := \begin{bmatrix} x_1 y_1 \\ \vdots \\ x_r y_r \end{bmatrix} = \sum_{i=1}^r x_i y_i e_i \qquad \longleftrightarrow \qquad \langle r \rangle := \sum_{i=1}^r e_i \otimes e_i \otimes e_i \quad \in \ \mathbb{F}^r \otimes \mathbb{F}^r \otimes \mathbb{F}^r$$

Fact: if we have a restriction $\mathsf{MM}_n \leq \langle r \rangle$, then MM_n needs $\leq r$ multiplications.

Definition — Tensor rank

Given a 3-tensor T, we define its **(tensor)** rank as

$$R(T) := \min\{r \mid T \leq \langle r \rangle\},\$$

Question: How many multiplications do we need?

Idea: Compare with a bilinear map for which we know.

Define the diagonal bilinear map / tensor as

$$f_r(x,y) := \begin{bmatrix} x_1 y_1 \\ \vdots \\ x_r y_r \end{bmatrix} = \sum_{i=1}^r x_i y_i e_i \qquad \longleftrightarrow \qquad \langle r \rangle := \sum_{i=1}^r e_i \otimes e_i \otimes e_i \quad \in \ \mathbb{F}^r \otimes \mathbb{F}^r \otimes \mathbb{F}^r$$

Fact: if we have a restriction $\mathsf{MM}_n \leq \langle r \rangle$, then MM_n needs $\leq r$ multiplications.

Definition — Tensor rank

Given a 3-tensor T, we define its **(tensor)** rank as

$$R(T) := \min\{r \mid T \leq \langle r \rangle\},\$$

i.e. the size of the smallest diagonal tensor that restricts to T.

Question: How many multiplications do we need? \iff What is the tensor rank of MM_n ? **Idea:** Compare with a bilinear map for which we know.

Define the diagonal bilinear map / tensor as

$$f_r(x,y) := \begin{bmatrix} x_1 y_1 \\ \vdots \\ x_r y_r \end{bmatrix} = \sum_{i=1}^r x_i y_i e_i \qquad \longleftrightarrow \qquad \langle r \rangle := \sum_{i=1}^r e_i \otimes e_i \otimes e_i \quad \in \ \mathbb{F}^r \otimes \mathbb{F}^r \otimes \mathbb{F}^r$$

Fact: if we have a restriction $\mathsf{MM}_n \leq \langle r \rangle$, then MM_n needs $\leq r$ multiplications.

Definition — Tensor rank

Given a 3-tensor T, we define its **(tensor)** rank as

$$R(T) := \min\{r \mid T \leq \langle r \rangle\},\$$

i.e. the size of the smallest diagonal tensor that restricts to T.

Definition — Tensor rank

Given a 3-tensor T, we define its **(tensor)** rank as

$$R(T) := \min\{r \mid T \leq \langle r \rangle\}$$

Definition — Tensor rank

Given a 3-tensor T, we define its **(tensor)** rank as

$$R(T) := \min\{r \mid T \leq \langle r \rangle\}$$

Central question — Tensor rank of matrix multiplication

What is $R(MM_n)$?

Definition — Tensor rank

Given a 3-tensor T, we define its **(tensor)** rank as

$$R(T) := \min\{r \mid T \leq \langle r \rangle\}$$

Central question — Tensor rank of matrix multiplication

What is $R(MM_n)$?

Example — Naive MM₂ and [Strassen 1969]

Naive algorithm: $MM_2 \leq \langle 8 \rangle$

Definition — Tensor rank

Given a 3-tensor T, we define its **(tensor)** rank as

$$R(T) := \min\{r \mid T \leq \langle r \rangle\}$$

Central question — Tensor rank of matrix multiplication

What is $R(MM_n)$?

Example — Naive MM₂ and [Strassen 1969]

Naive algorithm: $MM_2 \leq \langle 8 \rangle$

Strassen: $R(MM_2) = 7$

Definition — Tensor rank

Given a 3-tensor T, we define its **(tensor)** rank as

$$R(T) := \min\{ r \mid T \leq \langle r \rangle \}$$

Central question — Tensor rank of matrix multiplication

What is $R(MM_n)$?

Example — Naive MM₂ and [Strassen 1969]

Naive algorithm: $MM_2 \le \langle 8 \rangle$

Strassen: $R(MM_2) = 7$

This is just the beginning of the story. In this seminar we will/might see:

• A session on tensor rank

Asymptotic aspects

A session on border bank

• Student topic: Schönhage's τ -theorem

Definition — Quantum multipartite systems and state

Definition — Quantum multipartite systems and state

• We define a (single-partite) quantum system as a Hilbert space \mathbb{C}^n .

$Definition - - Quantum \ multipartite \ systems \ and \ states$

- We define a (single-partite) quantum system as a Hilbert space \mathbb{C}^n .
- We define a **multi-partite quantum systems** as the tensor product of such systems.

$Definition - - Quantum \ multipartite \ systems \ and \ states$

- We define a (single-partite) quantum system as a Hilbert space \mathbb{C}^n .
- We define a **multi-partite quantum systems** as the tensor product of such systems. E.g. a quantum system with three parties is given by $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2} \otimes \mathbb{C}^{n_3}$.

Definition — Quantum multipartite systems and states

- We define a (single-partite) quantum system as a Hilbert space \mathbb{C}^n .
- We define a **multi-partite quantum systems** as the tensor product of such systems. E.g. a quantum system with three parties is given by $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2} \otimes \mathbb{C}^{n_3}$.
- We define a **quantum state** as an element T of a quantum system with $||T||_2 = 1$.

Definition — Quantum multipartite systems and states

- We define a (single-partite) quantum system as a Hilbert space \mathbb{C}^n .
- We define a **multi-partite quantum systems** as the tensor product of such systems. E.g. a quantum system with three parties is given by $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2} \otimes \mathbb{C}^{n_3}$.
- We define a **quantum state** as an element T of a quantum system with $||T||_2 = 1$.

Example — Three qubits

A **qubit** is the system \mathbb{C}^2 .

Definition — Quantum multipartite systems and states

- We define a (single-partite) quantum system as a Hilbert space \mathbb{C}^n .
- We define a **multi-partite quantum systems** as the tensor product of such systems. E.g. a quantum system with three parties is given by $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2} \otimes \mathbb{C}^{n_3}$.
- We define a **quantum state** as an element T of a quantum system with $||T||_2 = 1$.

Example — Three qubits

A **qubit** is the system \mathbb{C}^2 . Examples of states: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $|+\rangle := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (superposition).

Definition — Quantum multipartite systems and states

- We define a (single-partite) quantum system as a Hilbert space \mathbb{C}^n .
- We define a **multi-partite quantum systems** as the tensor product of such systems. E.g. a quantum system with three parties is given by $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2} \otimes \mathbb{C}^{n_3}$.
- ullet We define a **quantum state** as an element T of a quantum system with $\|T\|_2=1$.

Example — Three qubits

A **qubit** is the system \mathbb{C}^2 . Examples of states: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $|+\rangle := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (superposition).

Three parties can each have a qubit. Their shared system is $\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2$.

Quantum states

Definition — Quantum multipartite systems and states

- We define a (single-partite) quantum system as a Hilbert space \mathbb{C}^n .
- We define a **multi-partite quantum systems** as the tensor product of such systems. E.g. a quantum system with three parties is given by $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2} \otimes \mathbb{C}^{n_3}$.
- We define a **quantum state** as an element T of a quantum system with $||T||_2 = 1$.

Example — Three qubits

A **qubit** is the system \mathbb{C}^2 . Examples of states: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $|+\rangle := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (superposition).

Three parties can each have a qubit. Their shared system is $\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2$. Examples of states:

$$|+\rangle \otimes |+\rangle \otimes |+\rangle$$

Definition — Quantum multipartite systems and states

- We define a (single-partite) quantum system as a Hilbert space \mathbb{C}^n .
- We define a **multi-partite quantum systems** as the tensor product of such systems. E.g. a quantum system with three parties is given by $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2} \otimes \mathbb{C}^{n_3}$.
- We define a **quantum state** as an element T of a quantum system with $||T||_2 = 1$.

Example — Three qubits

A **qubit** is the system \mathbb{C}^2 . Examples of states: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $|+\rangle := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (superposition).

Three parties can each have a qubit. Their shared system is $\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2$. Examples of states:

$$\ket{+}\otimes\ket{+}\otimes\ket{+} = rac{\langle 2
angle}{\sqrt{2}} = rac{1}{\sqrt{2}}(e_1\otimes e_1\otimes e_1 + e_2\otimes e_2\otimes e_2)$$

Quantum states

Definition — Quantum multipartite systems and states

- We define a (single-partite) quantum system as a Hilbert space \mathbb{C}^n .
- We define a **multi-partite quantum systems** as the tensor product of such systems. E.g. a quantum system with three parties is given by $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2} \otimes \mathbb{C}^{n_3}$.
- ullet We define a **quantum state** as an element T of a quantum system with $\|T\|_2=1$.

Example — Three qubits

A **qubit** is the system \mathbb{C}^2 . Examples of states: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $|+\rangle := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (superposition).

Three parties can each have a qubit. Their shared system is $\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2$. Examples of states:

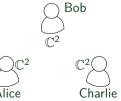
$$\ket{+}\otimes\ket{+}\otimes\ket{+} = rac{\langle 2
angle}{\sqrt{2}} = rac{1}{\sqrt{2}}(e_1\otimes e_1\otimes e_1 + e_2\otimes e_2\otimes e_2) = rac{\mathsf{W}}{\sqrt{3}} = rac{1}{\sqrt{3}}(e_1\otimes e_1\otimes e_2 + e_1\otimes e_2\otimes e_1 + e_2\otimes e_1\otimes e_1)$$

Example — Three qubits

A **qubit** is the system \mathbb{C}^2 . Examples of states: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $|+\rangle \coloneqq \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (superposition).

Three parties can each have a qubit. Their shared system is $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$. Examples of states:

$$\ket{+}\otimes\ket{+}\otimes\ket{+} = rac{\langle 2
angle}{\sqrt{2}} = rac{1}{\sqrt{2}}(e_1\otimes e_1\otimes e_1 + e_2\otimes e_2\otimes e_2) = rac{\mathsf{W}}{\sqrt{3}} = rac{1}{\sqrt{3}}(e_1\otimes e_1\otimes e_2 + e_1\otimes e_2\otimes e_1 + e_2\otimes e_1\otimes e_1)$$



Example — Three qubits

A **qubit** is the system \mathbb{C}^2 . Examples of states: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $|+\rangle := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (superposition).

Three parties can each have a qubit. Their shared system is $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$. Examples of states:

$$\ket{+}\otimes\ket{+}\otimes\ket{+} = rac{\langle 2
angle}{\sqrt{2}} = rac{1}{\sqrt{2}}(\mathsf{e}_1\otimes\mathsf{e}_1\otimes\mathsf{e}_1+\mathsf{e}_2\otimes\mathsf{e}_2\otimes\mathsf{e}_2) \ rac{\mathsf{W}}{\sqrt{3}} = rac{1}{\sqrt{3}}(\mathsf{e}_1\otimes\mathsf{e}_1\otimes\mathsf{e}_2+\mathsf{e}_1\otimes\mathsf{e}_2\otimes\mathsf{e}_1+\mathsf{e}_2\otimes\mathsf{e}_1\otimes\mathsf{e}_1)$$

Intuition:

$$\mathbb{C}^2$$
Alice
$$\mathbb{C}^2$$

$$\mathbb{C}^2$$
Charlie

Example — Three qubits

A **qubit** is the system \mathbb{C}^2 . Examples of states: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $|+\rangle := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (superposition).

Three parties can each have a qubit. Their shared system is $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$. Examples of states:

$$\ket{+}\otimes\ket{+}\otimes\ket{+} = rac{ra{2}}{\sqrt{2}} = rac{1}{\sqrt{2}}(e_1\otimes e_1\otimes e_1 + e_2\otimes e_2\otimes e_2) \ rac{\mathsf{W}}{\sqrt{3}} = rac{1}{\sqrt{3}}(e_1\otimes e_1\otimes e_2 + e_1\otimes e_2\otimes e_1 + e_2\otimes e_1\otimes e_1)$$

Intuition:

• Three parties Alice, Bob and Charlie share state $\langle 2 \rangle / \sqrt{2}$. They can "interact" only with their qubit.

$$\mathbb{C}^2$$
 Charlie

Example — Three qubits

A **qubit** is the system \mathbb{C}^2 . Examples of states: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $|+\rangle := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (superposition).

Three parties can each have a qubit. Their shared system is $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$. Examples of states:

$$\ket{+}\otimes\ket{+}\otimes\ket{+} = rac{ra{2}}{\sqrt{2}} = rac{1}{\sqrt{2}}(e_1\otimes e_1\otimes e_1 + e_2\otimes e_2\otimes e_2) \ rac{\mathsf{W}}{\sqrt{3}} = rac{1}{\sqrt{3}}(e_1\otimes e_1\otimes e_2 + e_1\otimes e_2\otimes e_1 + e_2\otimes e_1\otimes e_1)$$

Intuition:

- Three parties Alice, Bob and Charlie share state $\langle 2 \rangle / \sqrt{2}$. They can "interact" only with their qubit.
- Alice "measures": the state collapses to outcome e_1 or e_2 .

 \mathbb{C}^2 Charlie

Example — Three qubits

A **qubit** is the system \mathbb{C}^2 . Examples of states: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $|+\rangle \coloneqq \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (superposition).

Three parties can each have a qubit. Their shared system is $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$. Examples of states:

$$\ket{+}\otimes\ket{+}\otimes\ket{+} = rac{ra{2}}{\sqrt{2}} = rac{1}{\sqrt{2}}(e_1\otimes e_1\otimes e_1 + e_2\otimes e_2\otimes e_2) \ rac{\mathsf{W}}{\sqrt{3}} = rac{1}{\sqrt{3}}(e_1\otimes e_1\otimes e_2 + e_1\otimes e_2\otimes e_1 + e_2\otimes e_1\otimes e_1)$$

Intuition:

- Three parties Alice, Bob and Charlie share state $\langle 2 \rangle / \sqrt{2}$. They can "interact" only with their qubit.
- Alice "measures": the state collapses to outcome e_1 or e_2 .
- If Alice outcomes is e_1 .

 \mathbb{C}^2 Charlie

Example — Three qubits

A **qubit** is the system \mathbb{C}^2 . Examples of states: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $|+\rangle \coloneqq \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (superposition).

Three parties can each have a qubit. Their shared system is $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$. Examples of states:

$$\ket{+}\otimes\ket{+}\otimes\ket{+} = rac{\langle 2
angle}{\sqrt{2}} = rac{1}{\sqrt{2}}(e_1\otimes e_1\otimes e_1 + e_2\otimes e_2\otimes e_2) \ rac{\mathsf{W}}{\sqrt{3}} = rac{1}{\sqrt{3}}(e_1\otimes e_1\otimes e_2 + e_1\otimes e_2\otimes e_1 + e_2\otimes e_1\otimes e_1)$$

Intuition:

- Three parties Alice, Bob and Charlie share state $\langle 2 \rangle / \sqrt{2}$. They can "interact" only with their qubit.
- Alice "measures": the state collapses to outcome e_1 or e_2 .
- If Alice outcomes is e_1 . Then Bob's and Charlie's qubits are now in state e_1 too.

 \mathbb{C}^2 Charlie

Example — Three qubits

A **qubit** is the system \mathbb{C}^2 . Examples of states: $\begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}$ and $|+\rangle \coloneqq \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$ (superposition).

Three parties can each have a qubit. Their shared system is $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$. Examples of states:

$$\ket{+}\otimes\ket{+}\otimes\ket{+} = rac{\langle 2
angle}{\sqrt{2}} = rac{1}{\sqrt{2}}(e_1\otimes e_1\otimes e_1 + e_2\otimes e_2\otimes e_2) \ rac{\mathsf{W}}{\sqrt{3}} = rac{1}{\sqrt{3}}(e_1\otimes e_1\otimes e_2 + e_1\otimes e_2\otimes e_1 + e_2\otimes e_1\otimes e_1)$$

Intuition:

- Three parties Alice, Bob and Charlie share state $\langle 2 \rangle / \sqrt{2}$. They can "interact" only with their qubit.
- Alice "measures": the state collapses to outcome e_1 or e_2 .
- If Alice outcomes is e_1 . Then Bob's and Charlie's qubits are now in state e_1 too. This phenomenon is entanglement.

${\sf Takeaway} \ {\sf ---} \ {\sf Quantum} \ {\sf entanglement}$

Entanglement in quantum systems is modelled by tensors over $\ensuremath{\mathbb{C}}.$

${\sf Takeaway} \ {\sf ---} \ {\sf Quantum} \ {\sf entanglement}$

Entanglement in quantum systems is modelled by tensors over $\mathbb{C}.$

• Entanglement is a vital resource for many quantum computing applications.

Takeaway — Quantum entanglement

Entanglement in quantum systems is modelled by tensors over $\mathbb{C}.$

- Entanglement is a vital resource for many quantum computing applications.
- Different types are possible. Example: $\langle 2 \rangle / \sqrt{2}$ and $W / \sqrt{3}$.

Takeaway — Quantum entanglement

Entanglement in quantum systems is modelled by tensors over $\mathbb{C}.$

- Entanglement is a vital resource for many quantum computing applications.
- Different types are possible. Example: $\langle 2 \rangle / \sqrt{2}$ and $W / \sqrt{3}$.

Central question — Quantum entanglement

Can we classify the different types of entanglement?

Takeaway — Quantum entanglement

Entanglement in quantum systems is modelled by tensors over \mathbb{C} .

- Entanglement is a vital resource for many quantum computing applications.
- Different types are possible. Example: $\langle 2 \rangle / \sqrt{2}$ and $W / \sqrt{3}$.

Central question — Quantum entanglement

Can we classify the different types of entanglement?

• Intuition: Entanglement cannot increase under local operations.

Takeaway — Quantum entanglement

Entanglement in quantum systems is modelled by tensors over $\mathbb{C}.$

- Entanglement is a vital resource for many quantum computing applications.
- Different types are possible. Example: $\langle 2 \rangle / \sqrt{2}$ and $W / \sqrt{3}$.

Central question — Quantum entanglement

Can we classify the different types of entanglement?

- Intuition: Entanglement cannot increase under local operations.
- In its most general form, this is restriction.

o Part I: What is a tensor? Part II: Matrix multiplication Quantum entanglement Combinatorics (Sub)rank Part III: Group actions on tensor OOOOO OOO OOO OOO

Entanglement

Takeaway — Quantum entanglement

Entanglement in quantum systems is modelled by tensors over \mathbb{C} .

- Entanglement is a vital resource for many quantum computing applications.
- Different types are possible. Example: $\langle 2 \rangle / \sqrt{2}$ and $W / \sqrt{3}$.

Central question — Quantum entanglement

Can we classify the different types of entanglement?

- **Intuition**: Entanglement cannot increase under local operations.
- In its most general form, this is restriction.
- Physical interpretation: SLOCC (Stochastic Local Operations and Classical Communication) transformations.

Part II: What is a tensor? Part II: Matrix multiplication Quantum entanglement Combinatorics (Sub)rank Part III: Group actions on tenso

Entanglement

Takeaway — Quantum entanglement

Entanglement in quantum systems is modelled by tensors over \mathbb{C} .

- Entanglement is a vital resource for many quantum computing applications.
- Different types are possible. Example: $\langle 2 \rangle / \sqrt{2}$ and $W / \sqrt{3}$.

Central question — Quantum entanglement

Can we classify the different types of entanglement?

- Intuition: Entanglement cannot increase under local operations.
- In its most general form, this is restriction.
- Physical interpretation: SLOCC (Stochastic Local Operations and Classical Communication) transformations.

Definition — Equivalence classes under restriction

We write $T \sim S$ whenever there are restrictions $T \geq S$ and $T \leq S$.

Entanglement

Takeaway — Quantum entanglement

Entanglement in quantum systems is modelled by tensors over $\mathbb{C}.$

- Entanglement is a vital resource for many quantum computing applications.
- Different types are possible. Example: $\langle 2 \rangle / \sqrt{2}$ and $W / \sqrt{3}$.

Central question — Quantum entanglement

Can we classify the different types of entanglement? Can we classify the equivalence classes and their relations under restriction?

- Intuition: Entanglement cannot increase under local operations.
- In its most general form, this is restriction.
- Physical interpretation: SLOCC (Stochastic Local Operations and Classical Communication) transformations.

Definition — Equivalence classes under restriction

We write $T \sim S$ whenever there are restrictions $T \geq S$ and $T \leq S$.

• We know $\langle 3 \rangle \geq$ W. Claim: $\langle 3 \rangle \nsim$ W, as $\langle 3 \rangle \nleq$ W.

• We know $\langle 3 \rangle \geq$ W. Claim: $\langle 3 \rangle \nsim$ W, as $\langle 3 \rangle \nleq$ W. We use a restriction monotone.

• We know $\langle 3 \rangle \geq W$. Claim: $\langle 3 \rangle \nsim W$, as $\langle 3 \rangle \not \leq W$. We use a restriction monotone.

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

• We know $\langle 3 \rangle \geq$ W. Claim: $\langle 3 \rangle \sim$ W, as $\langle 3 \rangle \not \leq$ W. We use a restriction monotone.

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Theorem — Flattening ranks

Given $T \in V \otimes W \otimes U$ we can consider T as a matrix $M_T \in V \otimes (W \otimes U)$, and compute matrix rank.

• We know $\langle 3 \rangle \geq$ W. Claim: $\langle 3 \rangle \sim$ W, as $\langle 3 \rangle \not\leq$ W. We use a restriction monotone.

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Theorem — Flattening ranks

Given $T \in V \otimes W \otimes U$ we can consider T as a matrix $M_T \in V \otimes (W \otimes U)$, and compute matrix rank. We call this the 1st **flattening rank** R_1 .

• We know $\langle 3 \rangle \geq W$. Claim: $\langle 3 \rangle \sim W$, as $\langle 3 \rangle \not \leq W$. We use a restriction monotone.

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Theorem — Flattening ranks

• We know $\langle 3 \rangle \geq W$. Claim: $\langle 3 \rangle \nsim W$, as $\langle 3 \rangle \nleq W$. We use a restriction monotone.

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Theorem — Flattening ranks

$$\mathsf{R}_1(\mathsf{W}) = \mathsf{rank} \big(e_1 \otimes (e_1 \boxtimes e_2) + e_1 \otimes (e_2 \boxtimes e_1) + e_2 \otimes (e_1 \boxtimes e_1) \big)$$

• We know $\langle 3 \rangle \geq W$. Claim: $\langle 3 \rangle \nsim W$, as $\langle 3 \rangle \not \leq W$. We use a restriction monotone.

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Theorem — Flattening ranks

$$\begin{split} \mathsf{R}_1(\mathsf{W}) &= \mathsf{rank}\big(e_1 \otimes (e_1 \boxtimes e_2) + e_1 \otimes (e_2 \boxtimes e_1) + e_2 \otimes (e_1 \boxtimes e_1)\big) \\ &= \mathsf{rank}\bigg(\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right] \otimes \left[\begin{smallmatrix} 0 \\ 1 \\ 0 \end{smallmatrix}\right] + \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right] \otimes \left[\begin{smallmatrix} 0 \\ 0 \\ 1 \end{smallmatrix}\right] + \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right] \otimes \left[\begin{smallmatrix} 1 \\ 0 \\ 0 \end{smallmatrix}\right] \bigg) \end{split}$$

• We know $\langle 3 \rangle \geq W$. Claim: $\langle 3 \rangle \nsim W$, as $\langle 3 \rangle \not \leq W$. We use a restriction monotone.

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Theorem — Flattening ranks

$$\begin{split} \mathsf{R}_1(\mathsf{W}) &= \mathsf{rank} \big(e_1 \otimes (e_1 \boxtimes e_2) + e_1 \otimes (e_2 \boxtimes e_1) + e_2 \otimes (e_1 \boxtimes e_1) \big) \\ &= \mathsf{rank} \bigg(\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 0 \\ 1 \\ 0 \end{smallmatrix} \right] + \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 0 \end{smallmatrix} \right] + \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right] \otimes \left[\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 0 \end{smallmatrix} \right] \bigg) = \mathsf{rank} \left[\begin{smallmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{smallmatrix} \right] \end{split}$$

• We know $\langle 3 \rangle \geq W$. Claim: $\langle 3 \rangle \nsim W$, as $\langle 3 \rangle \not \leq W$. We use a restriction monotone.

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Theorem — Flattening ranks

$$\begin{split} \mathsf{R}_1(\mathsf{W}) &= \mathsf{rank}\big(e_1 \otimes (e_1 \boxtimes e_2) + e_1 \otimes (e_2 \boxtimes e_1) + e_2 \otimes (e_1 \boxtimes e_1)\big) \\ &= \mathsf{rank}\bigg(\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right] \otimes \left[\begin{smallmatrix} 0 \\ 1 \\ 0 \end{smallmatrix}\right] + \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right] \otimes \left[\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 0 \end{smallmatrix}\right] + \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right] \otimes \left[\begin{smallmatrix} 0 \\ 1 \\ 0 \end{smallmatrix}\right] \bigg) = \mathsf{rank}\left[\begin{smallmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{smallmatrix}\right] = 2 \end{split}$$

• We know $\langle 3 \rangle \geq W$. Claim: $\langle 3 \rangle \nsim W$, as $\langle 3 \rangle \not \leq W$. We use a restriction monotone.

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Theorem — Flattening ranks

Given $T \in V \otimes W \otimes U$ we can consider T as a matrix $M_T \in V \otimes (W \otimes U)$, and compute matrix rank. We call this the 1st **flattening rank** R_1 . Then R_1, R_2, R_3 are restriction monotones.

Proof: Restriction $(A \otimes B \otimes C)T$ becomes left-right matrix multiplication $(A)M_T(B \boxtimes C)^*$. \square

$$\begin{split} \mathsf{R}_1(\mathsf{W}) &= \mathsf{rank}\big(e_1 \otimes (e_1 \boxtimes e_2) + e_1 \otimes (e_2 \boxtimes e_1) + e_2 \otimes (e_1 \boxtimes e_1)\big) \\ &= \mathsf{rank}\bigg(\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right] \otimes \left[\begin{smallmatrix} 0 \\ 1 \\ 0 \end{smallmatrix}\right] + \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right] \otimes \left[\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 0 \end{smallmatrix}\right] + \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right] \otimes \left[\begin{smallmatrix} 0 \\ 1 \\ 0 \end{smallmatrix}\right] \bigg) = \mathsf{rank}\left[\begin{smallmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{smallmatrix}\right] = 2 \end{split}$$

• We know $\langle 3 \rangle \geq W$. Claim: $\langle 3 \rangle \nsim W$, as $\langle 3 \rangle \nleq W$. We use a restriction monotone.

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Theorem — Flattening ranks

Given $T \in V \otimes W \otimes U$ we can consider T as a matrix $M_T \in V \otimes (W \otimes U)$, and compute matrix rank. We call this the 1st **flattening rank** R_1 . Then R_1, R_2, R_3 are restriction monotones.

Proof: Restriction $(A \otimes B \otimes C)T$ becomes left-right matrix multiplication $(A)M_T(B \boxtimes C)^*$. \square

- We know $\langle 3 \rangle \geq$ W. Claim: $\langle 3 \rangle \sim$ W, as $\langle 3 \rangle \not\leq$ W. We use a restriction monotone.
- We say: $\left\langle 3\right\rangle /\sqrt{3}$ contains strictly more entanglement than $W/\sqrt{3}.$

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Theorem — Flattening ranks

Given $T \in V \otimes W \otimes U$ we can consider T as a matrix $M_T \in V \otimes (W \otimes U)$, and compute matrix rank. We call this the 1st **flattening rank** R_1 . Then R_1, R_2, R_3 are restriction monotones.

Proof: Restriction $(A \otimes B \otimes C)T$ becomes left-right matrix multiplication $(A)M_T(B \boxtimes C)^*$. \square

• **Claim:** ⟨2⟩ ≈ W.

• Claim: $\langle 2 \rangle \nsim W$. In fact: $\langle 2 \rangle \nleq W$ and $\langle 2 \rangle \ngeq W$.

• Claim: $\langle 2 \rangle \nsim W$. In fact: $\langle 2 \rangle \nleq W$ and $\langle 2 \rangle \ngeq W$. We will use an invariant.

- Claim: $\langle 2 \rangle \nsim W$. In fact: $\langle 2 \rangle \nleq W$ and $\langle 2 \rangle \ngeq W$. We will use an invariant.
- Both tensors live in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$: equivalence implies restriction with *invertible* matrices.

- Claim: $\langle 2 \rangle \sim W$. In fact: $\langle 2 \rangle \nleq W$ and $\langle 2 \rangle \ngeq W$. We will use an invariant.
- Both tensors live in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$: equivalence implies restriction with *invertible* matrices.

Definition — Restriction semi-invariant

We say a function $f \colon V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when

$$f(T) = 0 \iff f((A \otimes B \otimes C)T) = 0 \text{ for all invertible } (A, B, C) \in GL(V) \times GL(W) \times GL(U).$$

- Claim: $\langle 2 \rangle \sim W$. In fact: $\langle 2 \rangle \nleq W$ and $\langle 2 \rangle \ngeq W$. We will use an invariant.
- Both tensors live in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$: equivalence implies restriction with *invertible* matrices.

Definition — Restriction semi-invariant

We say a function $f: V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when $f(T) = 0 \iff f((A \otimes B \otimes C)T) = 0$ for all invertible $(A, B, C) \in GL(V) \times GL(W) \times GL(U)$.

Proposition — Hyperdeterminant/3-tangle

There exists an semi-invariant f for $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ with $f(\langle 2 \rangle) \neq 0 = f(W)$. It is called the **hyperdeterminant** or **3-tangle**.

- Claim: $\langle 2 \rangle \sim W$. In fact: $\langle 2 \rangle \nleq W$ and $\langle 2 \rangle \ngeq W$. We will use an invariant.
- Both tensors live in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$: equivalence implies restriction with *invertible* matrices.

Definition — Restriction semi-invariant

We say a function $f: V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when $f(T) = 0 \iff f((A \otimes B \otimes C)T) = 0$ for all invertible $(A, B, C) \in GL(V) \times GL(W) \times GL(U)$.

Proposition — Hyperdeterminant/3-tangle

There exists an semi-invariant f for $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ with $f(\langle 2 \rangle) \neq 0 = f(W)$. It is called the **hyperdeterminant** or **3-tangle**.

Proof. We might see this as part of a student topic :)

- Claim: $\langle 2 \rangle \sim W$. In fact: $\langle 2 \rangle \nleq W$ and $\langle 2 \rangle \ngeq W$. We will use an invariant.
- Both tensors live in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$: equivalence implies restriction with *invertible* matrices.
- Thus: $\langle 2 \rangle / \sqrt{2}$ has a genuinly different type of entanglement than W/ $\sqrt{3}$.

Definition — Restriction semi-invariant

We say a function $f: V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when $f(T) = 0 \iff f((A \otimes B \otimes C)T) = 0$ for all invertible $(A, B, C) \in GL(V) \times GL(W) \times GL(U)$.

Proposition — Hyperdeterminant/3-tangle

There exists an semi-invariant f for $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ with $f(\langle 2 \rangle) \neq 0 = f(W)$. It is called the **hyperdeterminant** or **3-tangle**.

Proof. We might see this as part of a student topic :)

Central question — Quantum entanglement

Can we classify equivalence under restriction, and determine (non-)existence of restrictions?

Central question — Quantum entanglement

Can we classify equivalence under restriction, and determine (non-)existence of restrictions?

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Central question — Quantum entanglement

Can we classify equivalence under restriction, and determine (non-)existence of restrictions?

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Definition — Restriction semi-invariant

We say a function $f \colon V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when

$$f((A \otimes B \otimes C)T) = 0 \iff f(T) = 0 \text{ for all invertible } (A, B, C) \in GL(V) \times GL(W) \times GL(U).$$

Central question — Quantum entanglement

Can we classify equivalence under restriction, and determine (non-)existence of restrictions?

Definition — Restriction monotone

We say a function $f: \{3\text{-tensors}\} \to \mathbb{R}$ is **monotone** when $S \leq T \implies f(S) \leq f(T)$.

Definition — Restriction semi-invariant

We say a function $f: V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when

$$f((A \otimes B \otimes C)T) = 0 \iff f(T) = 0 \text{ for all invertible } (A, B, C) \in GL(V) \times GL(W) \times GL(U).$$

Again just the beginning of the story. In this seminar we will/might see:

Schur–Weyl duality, covariants

• More monotones, (semi-)invariants

• The quantum functionals

• Student topic: classification of classes in $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$

Definition — Cap sets

Let
$$\mathbb{F} = \mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$$
.

Definition — Cap sets

Let
$$\mathbb{F} = \mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$$
.

A 3-term progression in \mathbb{F}^n is a sequence $(a, a+b, a+2b) \in \mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n$.

Definition — Cap sets

Let $\mathbb{F} = \mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$.

A 3-term progression in \mathbb{F}^n is a sequence $(a, a+b, a+2b) \in \mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n$.

 $\mathcal{A} \subset \mathbb{F}^n$ is called a **cap set** when no 3 distinct elements of \mathcal{A} form a 3-term progression.

Definition — Cap sets

Let $\mathbb{F} = \mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$.

A 3-term progression in \mathbb{F}^n is a sequence $(a, a+b, a+2b) \in \mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n$.

 $\mathcal{A} \subset \mathbb{F}^n$ is called a **cap set** when no 3 distinct elements of \mathcal{A} form a 3-term progression.

Example (n = 2): $A = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$ is a cap set

Definition — Cap sets

Let $\mathbb{F} = \mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$.

A 3-term progression in \mathbb{F}^n is a sequence $(a, a+b, a+2b) \in \mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n$.

 $\mathcal{A} \subset \mathbb{F}^n$ is called a **cap set** when no 3 distinct elements of \mathcal{A} form a 3-term progression.

Example (n = 2): $\mathcal{A} = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$ is a cap set, $\mathcal{A}' = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \}$ is not.

Definition — Cap sets

Let $\mathbb{F} = \mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$.

A 3-term progression in \mathbb{F}^n is a sequence $(a, a+b, a+2b) \in \mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n$.

 $\mathcal{A}\subset\mathbb{F}^n$ is called a **cap set** when no 3 distinct elements of \mathcal{A} form a 3-term progression.

$$\textit{Example (n = 2): } \mathcal{A} = \left\{ \left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 \\ 2 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right] \right\} \text{ is a cap set, } \mathcal{A}' = \left\{ \left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 \\ 2 \end{smallmatrix} \right], \left[\begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right] \right\} \text{ is not.}$$

Motivating problem — Maximum size of cap sets

What is the maximum size of a cap set in terms of n?

Definition — Cap sets

Let $\mathbb{F} = \mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$.

A 3-term progression in \mathbb{F}^n is a sequence $(a, a+b, a+2b) \in \mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n$.

 $\mathcal{A} \subset \mathbb{F}^n$ is called a **cap set** when no 3 distinct elements of \mathcal{A} form a 3-term progression.

Example (n = 2): $\mathcal{A} = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ is a cap set, $\mathcal{A}' = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ is not.

Motivating problem — Maximum size of cap sets

What is the maximum size of a cap set in terms of n?

Or: does there exists a C < 3 such that the size is $\mathcal{O}(C^n)$?

Definition — Cap sets

Let $\mathbb{F} = \mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$.

A **3-term progression** in \mathbb{F}^n is a sequence $(a, a+b, a+2b) \in \mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n$.

 $\mathcal{A} \subset \mathbb{F}^n$ is called a **cap set** when no 3 distinct elements of \mathcal{A} form a 3-term progression.

 $\textit{Example (n = 2): } \mathcal{A} = \left\{ \left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 \\ 2 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right] \right\} \text{ is a cap set, } \mathcal{A}' = \left\{ \left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 \\ 2 \end{smallmatrix} \right], \left[\begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right] \right\} \text{ is not.}$

Motivating problem — Maximum size of cap sets

What is the maximum size of a cap set in terms of n?

Or: does there exists a C < 3 such that the size is $\mathcal{O}(C^n)$?

• A bound $\mathcal{O}(3^n/n)$ was known since 1995, by Alon and Dubiner.

Definition — Cap sets

Let $\mathbb{F} = \mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$.

A 3-term progression in \mathbb{F}^n is a sequence $(a, a+b, a+2b) \in \mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n$.

 $\mathcal{A} \subset \mathbb{F}^n$ is called a **cap set** when no 3 distinct elements of \mathcal{A} form a 3-term progression.

$$\textit{Example (n = 2): } \mathcal{A} = \left\{ \left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 \\ 2 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right] \right\} \text{ is a cap set, } \mathcal{A}' = \left\{ \left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 \\ 2 \end{smallmatrix} \right], \left[\begin{smallmatrix} 2 \\ 1 \end{smallmatrix} \right] \right\} \text{ is not.}$$

Motivating problem — Maximum size of cap sets

What is the maximum size of a cap set in terms of n? Or: does there exists a C < 3 such that the size is $\mathcal{O}(C^n)$?

- A bound $\mathcal{O}(3^n/n)$ was known since 1995, by Alon and Dubiner.
- Whether an exponential improvement over 3^n was possible became a big open problem.

Definition — Cap sets

Let
$$\mathbb{F} = \mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$$
.

A 3-term progression in \mathbb{F}^n is a sequence $(a, a+b, a+2b) \in \mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n$.

 $\mathcal{A} \subset \mathbb{F}^n$ is called a **cap set** when no 3 distinct elements of \mathcal{A} form a 3-term progression.

Example
$$(n = 2)$$
: $\mathcal{A} = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$ is a cap set, $\mathcal{A}' = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \}$ is not.

Motivating problem — Maximum size of cap sets

What is the maximum size of a cap set in terms of n? Or: does there exists a C < 3 such that the size is $\mathcal{O}(C^n)$?

- A bound $\mathcal{O}(3^n/n)$ was known since 1995, by Alon and Dubiner.
- Whether an exponential improvement over 3^n was possible became a big open problem.
- Settled with 2.756ⁿ in 2016 by Ellenberg & Gijswijt, based on work by Croot, Lev & Pach.

Definition — Cap sets

Let
$$\mathbb{F} = \mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$$
.

A **3-term progression** in \mathbb{F}^n is a sequence $(a, a+b, a+2b) \in \mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n$.

 $\mathcal{A} \subset \mathbb{F}^n$ is called a **cap set** when no 3 distinct elements of \mathcal{A} form a 3-term progression.

Example
$$(n = 2)$$
: $\mathcal{A} = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ is a cap set, $\mathcal{A}' = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ is not.

Motivating problem — Maximum size of cap sets

What is the maximum size of a cap set in terms of n?

Or: does there exists a C < 3 such that the size is $\mathcal{O}(C^n)$?

- A bound $\mathcal{O}(3^n/n)$ was known since 1995, by Alon and Dubiner.
- Whether an exponential improvement over 3^n was possible became a big open problem.
- Settled with 2.756ⁿ in 2016 by Ellenberg & Gijswijt, based on work by Croot, Lev & Pach.
- We can reformulate this result in terms of tensors!

Definition — The cap set tensor (or rather: the 3-term progression tensor

Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let $a \in \mathbb{F}^n = \mathbb{F}_3^n$ label standard basis elements $e_a \in \mathbb{F}^{3^n}$.

Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let $a \in \mathbb{F}^n = \mathbb{F}^n_3$ label standard basis elements $e_a \in \mathbb{F}^{3^n}$. We define the **cap set tensor** as

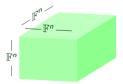
$$T_{\mathsf{capset},n} \coloneqq$$

$$\in \mathbb{F}^{3^n} \otimes \mathbb{F}^{3^n} \otimes \mathbb{F}^{3^n}$$

Let $a \in \mathbb{F}^n = \mathbb{F}_3^n$ label standard basis elements $e_a \in \mathbb{F}^{3^n}$. We define the **cap set tensor** as

$$T_{\mathsf{capset},n} \coloneqq$$

$$\in \mathbb{F}^{3^n} \otimes \mathbb{F}^{3^n} \otimes \mathbb{F}^{3^n}$$



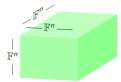
Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let $a \in \mathbb{F}^n = \mathbb{F}_3^n$ label standard basis elements $e_a \in \mathbb{F}^{3^n}$. We define the **cap set tensor** as

$$T_{\mathsf{capset},n} :=$$

$$\in \mathbb{F}^{3^n} \otimes \mathbb{F}^{3^n} \otimes \mathbb{F}^{3^n}$$

Intuition: The cap set tensor encodes all 3-term progressions.

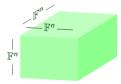


Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let $a \in \mathbb{F}^n = \mathbb{F}_2^n$ label standard basis elements $e_a \in \mathbb{F}^{3^n}$. We define the **cap set tensor** as

$$\mathcal{T}_{\mathsf{capset},n} \coloneqq \sum_{\substack{a,b,c \in \mathbb{F}^n \ (a,b,c) \text{ a 3-term progression}}} e_a \otimes e_b \otimes e_c \ \in \ \mathbb{F}^{3^n} \otimes \mathbb{F}^{3^n} \otimes \mathbb{F}^{3^n}$$

Intuition: The cap set tensor encodes all 3-term progressions.

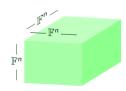


Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let $a \in \mathbb{F}^n = \mathbb{F}_3^n$ label standard basis elements $e_a \in \mathbb{F}^{3^n}$. We define the **cap set tensor** as

$$T_{\mathsf{capset},n} \coloneqq \sum_{\substack{a,b,c \in \mathbb{F}^n \ (a,b,c) \text{ a 3-term progression}}} e_a \otimes e_b \otimes e_c \ \in \ \mathbb{F}^{3^n} \otimes \mathbb{F}^{3^n} \otimes \mathbb{F}^{3^n}$$

Intuition: The cap set tensor encodes all 3-term progressions.



$$T_{\mathsf{capset},1} \coloneqq \langle 3 \rangle + \sum_{(i,j,k) \text{ a permutation of } (0,1,2)} e_i \otimes e_j \otimes e_k$$

Combinatorics

Combinatorics

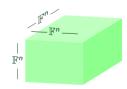
The cap set tensor

Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let $a \in \mathbb{F}^n = \mathbb{F}_2^n$ label standard basis elements $e_a \in \mathbb{F}^{3^n}$. We define the **cap set tensor** as

$$\mathcal{T}_{\mathsf{capset},n} \coloneqq \sum_{\substack{a,b,c \in \mathbb{F}^n \ (a,b,c) \text{ a } 3\text{-term progression}}} e_a \otimes e_b \otimes e_c \ \in \ \mathbb{F}^{3^n} \otimes \mathbb{F}^{3^n} \otimes \mathbb{F}^{3^n}$$

Intuition: The cap set tensor encodes all 3-term progressions.



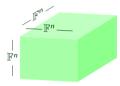
Claim: A cap set $A = \{a_1, \dots, a_m\} \subset \mathbb{F}^n$ gives rise to a restriction $T_{\mathsf{capset}, n} \geq \langle m \rangle$.

Claim: A cap set $\mathcal{A} = \{a_1, \dots, a_m\} \subset \mathbb{F}^n$ gives rise to a restriction $T_{\mathsf{capset}, n} \geq \langle m \rangle$.

Intuition: The cap set tensor encodes all 3-term progressions.

Claim: A cap set $A = \{a_1, \ldots, a_m\} \subset \mathbb{F}^n$ gives rise to a restriction $T_{\mathsf{capset}, n} \geq \langle m \rangle$.

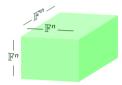
Intuition: The cap set tensor encodes all 3-term progressions.



Claim: A cap set $A = \{a_1, \dots, a_m\} \subset \mathbb{F}^n$ gives rise to a restriction $T_{\text{capset},n} \geq \langle m \rangle$.

Intuition: The cap set tensor encodes all 3-term progressions.

Restricting $T_{capset,n}$ to indices $a,b,c\in\mathcal{A}\subset\mathbb{F}^n$ gives 1 if and only if a = b = c.

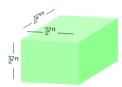


Claim: A cap set $A = \{a_1, \dots, a_m\} \subset \mathbb{F}^n$ gives rise to a restriction $T_{\mathsf{capset}, n} \geq \langle m \rangle$.

Intuition: The cap set tensor encodes all 3-term progressions.

Restricting $T_{\mathsf{capset},n}$ to indices $a,b,c \in \mathcal{A} \subset \mathbb{F}^n$ gives 1 if and only if a=b=c.

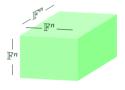
Example:
$$\mathcal{A} = \left\{ \left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 \\ 2 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right] \right\}$$



Claim: A cap set $A = \{a_1, \dots, a_m\} \subset \mathbb{F}^n$ gives rise to a restriction $T_{\mathsf{capset}, n} \geq \langle m \rangle$.

Intuition: The cap set tensor encodes all 3-term progressions.

Restricting $T_{\mathsf{capset},n}$ to indices $a,b,c\in\mathcal{A}\subset\mathbb{F}^n$ gives 1 if and only if a=b=c.

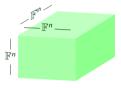


Example:
$$A = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$$

Claim: A cap set $A = \{a_1, \dots, a_m\} \subset \mathbb{F}^n$ gives rise to a restriction $T_{\mathsf{capset}, n} \geq \langle m \rangle$.

Intuition: The cap set tensor encodes all 3-term progressions.

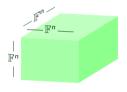
Restricting $T_{\mathsf{capset},n}$ to indices $a,b,c\in\mathcal{A}\subset\mathbb{F}^n$ gives 1 if and only if a=b=c.



Claim: A cap set $A = \{a_1, \ldots, a_m\} \subset \mathbb{F}^n$ gives rise to a restriction $T_{\mathsf{capset}, n} \geq \langle m \rangle$.

Intuition: The cap set tensor encodes all 3-term progressions.

Restricting $T_{\text{capset},n}$ to indices $a,b,c\in\mathcal{A}\subset\mathbb{F}^n$ gives 1 if and only if a=b=c.



Example:
$$A = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$$

$$(A \otimes A \otimes A) T_{\mathsf{capset},2} = \langle 3 \rangle$$

Definition — Subrank

Given a 3-tensor T, we define its **subrank** as

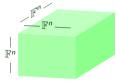
$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},$$

Subrank

Claim: A cap set $A = \{a_1, \dots, a_m\} \subset \mathbb{F}^n$ gives rise to a restriction $T_{\mathsf{capset}, n} \geq \langle m \rangle$.

Intuition: The cap set tensor encodes all 3-term progressions.

Restricting $T_{\text{capset},n}$ to indices $a,b,c\in\mathcal{A}\subset\mathbb{F}^n$ gives 1 if and only if a=b=c.



Example:
$$A = \{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$$

$$(A \otimes A \otimes A) T_{\mathsf{capset},2} = \langle 3 \rangle$$

Definition — Subrank

Given a 3-tensor \mathcal{T} , we define its $\operatorname{\mathbf{subrank}}$ as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},$$

Central question — Subrank of $T_{capset,n}$

What is $Q(T_{capset,n})$?

Definition — Subrank

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},\$$

Central question — Subrank of $T_{capset,n}$

What is $Q(T_{capset,n})$?

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},\$$

Central question — Subrank of $T_{capset,n}$

What is $Q(T_{capset,n})$?

$$Q(T_{\mathsf{capset},n})$$

Definition — Subrank

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},\$$

Central question — Subrank of $T_{capset,n}$

What is $Q(T_{capset,n})$?

$$Q(T_{\mathsf{capset},n}) \leq \mathsf{slicerank}(T_{\mathsf{capset},n})$$

Definition — Subrank

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},$$

Central question — Subrank of $T_{capset,n}$

What is $Q(T_{capset,n})$?

$$Q(T_{\mathsf{capset},n}) \leq \mathsf{slicerank}(T_{\mathsf{capset},n}) \approx 2.756^n$$

Definition — Subrank

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},$$

Central question — Subrank of $T_{capset,n}$

What is $Q(T_{capset,n})$?

• The maximum size of a cap set in \mathbb{F}^n is bounded by

$$Q(T_{\mathsf{capset},n}) \leq \mathsf{slicerank}(T_{\mathsf{capset},n}) \approx 2.756^n$$

• Originally proven via an equivalent formulation using polynomials $\mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$.

Definition — Subrank

Given a 3-tensor T, we define its **subrank** as

$$\mathsf{Q}(T) \coloneqq \mathsf{max}\{\ q \ \mid \ \langle q \rangle \leq T\},$$

Central question — Subrank of $T_{\mathsf{capset},n}$

What is $Q(T_{capset,n})$?

$$Q(T_{\mathsf{capset},n}) \leq \mathsf{slicerank}(T_{\mathsf{capset},n}) \approx 2.756^n$$

- Originally proven via an equivalent formulation using polynomials $\mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$.
- There are many more problems! Other fields than \mathbb{F}_3 , other arithmetic progressions, etc.

Definition — Subrank

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},\$$

Central question — Subrank of $T_{capset,n}$

What is $Q(T_{capset,n})$?

• The maximum size of a cap set in \mathbb{F}^n is bounded by

$$Q(T_{\mathsf{capset},n}) \leq \mathsf{slicerank}(T_{\mathsf{capset},n}) \approx 2.756^n$$

- Originally proven via an equivalent formulation using polynomials $\mathbb{F}^n \times \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$.
- ullet There are many more problems! Other fields than \mathbb{F}_3 , other arithmetic progressions, etc.

Once again again the beginning of the story. In this seminar we will/might see:

- A session on subrank
- More upper bounds for subrank

- A general asymptotic formulation
- Student topic: slice rank

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},$$

Given a 3-tensor T, we define its **rank** as

$$R(T) := \min\{r \mid T \leq \langle r \rangle\}$$

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},\$$

• $Q(T) \leq R(T)$.

Given a 3-tensor T, we define its **rank** as

$$R(T) := \min\{r \mid T \leq \langle r \rangle\}$$

Definition — Subrank

Given a 3-tensor T, we define its **subrank** as

$$\mathsf{Q}(T) \coloneqq \mathsf{max}\{\ q \ | \ \langle q \rangle \leq T\},$$

Definition — Rank

Given a 3-tensor T, we define its rank as

$$R(T) := \min\{ r \mid T \leq \langle r \rangle \}$$

• $Q(T) \leq R(T)$.

Proof: Use a flattening rank to show $\langle q \rangle \nleq \langle r \rangle$ if q > r. \square

Definition — Subranl

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},\$$

Definition — Rank

Given a 3-tensor T, we define its rank as

$$R(T) := \min\{ r \mid T \leq \langle r \rangle \}$$

• $Q(T) \leq R(T)$.

Proof: Use a flattening rank to show $\langle q \rangle \nleq \langle r \rangle$ if q > r. \square

• $Q(T) \neq R(T)$, since $\langle 1 \rangle \leq W \leq \langle 3 \rangle$ is the best we can do.

Definition — Subrant

Given a 3-tensor T, we define its **subrank** as

$$\mathsf{Q}(T) := \mathsf{max}\{\ q \mid \ \langle q \rangle \leq T\},$$

Definition — Rank

Given a 3-tensor T, we define its rank as

$$R(T) := \min\{ r \mid T \leq \langle r \rangle \}$$

• $Q(T) \leq R(T)$.

Proof: Use a flattening rank to show $\langle q \rangle \not \leq \langle r \rangle$ if q > r. \square

• $Q(T) \neq R(T)$, since $\langle 1 \rangle \leq W \leq \langle 3 \rangle$ is the best we can do. Proof idea: Use the hyperdeterminant to show $W \nleq \langle 2 \rangle$ and $\langle 2 \rangle \nleq W$.

Definition — Subranl

Given a 3-tensor T, we define its **subrank** as

$$\mathsf{Q}(T) := \mathsf{max}\{\ q \ \mid \ \langle q \rangle \leq T\},$$

Definition — Rank

Given a 3-tensor T, we define its **rank** as

$$R(T) := \min\{ r \mid T \le \langle r \rangle \}$$

• $Q(T) \leq R(T)$.

Proof: Use a flattening rank to show $\langle q \rangle \nleq \langle r \rangle$ if q > r. \square

- $Q(T) \neq R(T)$, since $\langle 1 \rangle \leq W \leq \langle 3 \rangle$ is the best we can do. Proof idea: Use the hyperdeterminant to show $W \nleq \langle 2 \rangle$ and $\langle 2 \rangle \nleq W$.
- For matrices, Q(M) = rank(M) = R(M)!

Definition — Subranl

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},$$

Definition — Rank

Given a 3-tensor T, we define its rank as

$$R(T) := \min\{ r \mid T \leq \langle r \rangle \}$$

• $Q(T) \leq R(T)$.

Proof: Use a flattening rank to show $\langle q \rangle \nleq \langle r \rangle$ if q > r. \square

- Q(T) \neq R(T), since $\langle 1 \rangle \leq W \leq \langle 3 \rangle$ is the best we can do. Proof idea: Use the hyperdeterminant to show $W \nleq \langle 2 \rangle$ and $\langle 2 \rangle \nleq W$.
- For matrices, $Q(M) = \operatorname{rank}(M) = R(M)!$ Proof: Restriction with $(A \otimes B)$ is left-right multiplication AMB^* . Set $r := \operatorname{rank}(M)$.

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},\$$

Given a 3-tensor T, we define its **rank** as

$$R(T) := \min\{ r \mid T \le \langle r \rangle \}$$

• $Q(T) \leq R(T)$.

Proof: Use a flattening rank to show $\langle q \rangle \not\leq \langle r \rangle$ if q > r. \square

- $Q(T) \neq R(T)$, since $\langle 1 \rangle \leq W \leq \langle 3 \rangle$ is the best we can do. Proof idea: Use the hyperdeterminant to show $W \not\leq \langle 2 \rangle$ and $\langle 2 \rangle \not\leq W$.
- For matrices, Q(M) = rank(M) = R(M)!*Proof:* Restriction with $(A \otimes B)$ is left-right multiplication AMB^* . Set r := rank(M). Use Gaussian elimination to map M to Ir.

Definition — Subran

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},$$

Definition — Rank

Given a 3-tensor T, we define its rank as

$$R(T) := \min\{ r \mid T \leq \langle r \rangle \}$$

• $Q(T) \leq R(T)$.

Proof: Use a flattening rank to show $\langle q \rangle \nleq \langle r \rangle$ if q > r. \square

- Q(T) \neq R(T), since $\langle 1 \rangle \leq W \leq \langle 3 \rangle$ is the best we can do. Proof idea: Use the hyperdeterminant to show $W \nleq \langle 2 \rangle$ and $\langle 2 \rangle \nleq W$.
- For matrices, $Q(M) = \operatorname{rank}(M) = R(M)!$ Proof: Restriction with $(A \otimes B)$ is left-right multiplication AMB^* . Set $r := \operatorname{rank}(M)$. Use Gaussian elimination to map M to I_r . Use $M = \sum_{i=1}^r v_i \otimes w_i$ to map I_r to M. \square

Takeaway — The tensor world

The tensor world is a lot more complicated & interesting than the matrix world!

Definition — Subrant

Given a 3-tensor T, we define its **subrank** as

$$Q(T) := \max\{ q \mid \langle q \rangle \leq T \},$$

Definition — Rank

Given a 3-tensor T, we define its rank as

$$R(T) := \min\{ r \mid T \leq \langle r \rangle \}$$

• $Q(T) \leq R(T)$.

Proof: Use a flattening rank to show $\langle q \rangle \nleq \langle r \rangle$ if q > r. \square

- Q(T) \neq R(T), since $\langle 1 \rangle \leq W \leq \langle 3 \rangle$ is the best we can do. Proof idea: Use the hyperdeterminant to show $W \nleq \langle 2 \rangle$ and $\langle 2 \rangle \nleq W$.
- For matrices, $Q(M) = \operatorname{rank}(M) = R(M)!$ Proof: Restriction with $(A \otimes B)$ is left-right multiplication AMB^* . Set $r := \operatorname{rank}(M)$. Use Gaussian elimination to map M to I_r . Use $M = \sum_{i=1}^r v_i \otimes w_i$ to map I_r to M. \square

Takeaway — The tensor world

The tensor world is a lot more complicated & interesting than the matrix world! We use ranks (rank, subrank, slice rank, ...), monotones, invariants, etc.

Recall the definition of invariants.

Definition — Restriction semi-invariant

We say a function $f: V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when

$$f\big((A\otimes B\otimes C)T\big)=0\iff f(T)=0\text{ for all invertible }(A,B,C)\in\mathsf{GL}(V)\times\mathsf{GL}(W)\times\mathsf{GL}(U).$$

Recall the definition of invariants. $GL(V) \times GL(W) \times GL(U)$ is a group

Definition — Restriction semi-invariant

We say a function $f \colon V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when

$$f((A \otimes B \otimes C)T) = 0 \iff f(T) = 0 \text{ for all invertible } (A, B, C) \in GL(V) \times GL(W) \times GL(U).$$

Recall the definition of invariants. $GL(V) \times GL(W) \times GL(U)$ is a group \rightarrow representation theory!

Definition — Restriction semi-invariant

We say a function $f \colon V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when

$$f((A \otimes B \otimes C)T) = 0 \iff f(T) = 0 \text{ for all invertible } (A, B, C) \in GL(V) \times GL(W) \times GL(U).$$

Recall the definition of invariants. $GL(V) \times GL(W) \times GL(U)$ is a group \rightarrow representation theory!

Definition — Restriction semi-invariant

We say a function $f \colon V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when

$$f\big((A\otimes B\otimes C)T\big)=0\iff f(T)=0\text{ for all invertible }(A,B,C)\in\mathsf{GL}(V)\times\mathsf{GL}(W)\times\mathsf{GL}(U).$$

Next week: *Schur–Weyl duality.*

Recall the definition of invariants. $GL(V) \times GL(W) \times GL(U)$ is a group \rightarrow representation theory!

Definition — Restriction semi-invariant

We say a function $f \colon V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when

$$f\big((A\otimes B\otimes C)T\big)=0\iff f(T)=0\text{ for all invertible }(A,B,C)\in\mathsf{GL}(V)\times\mathsf{GL}(W)\times\mathsf{GL}(U).$$

Next week: *Schur–Weyl duality.* Two group representations will be essential:

Recall the definition of invariants. $GL(V) \times GL(W) \times GL(U)$ is a group \rightarrow representation theory!

Definition — Restriction semi-invariant

We say a function $f \colon V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when

$$f\big((A \otimes B \otimes C)T\big) = 0 \iff f(T) = 0 \text{ for all invertible } (A,B,C) \in \mathsf{GL}(V) \times \mathsf{GL}(W) \times \mathsf{GL}(U).$$

Next week: Schur–Weyl duality. Two group representations will be essential:

Definition — The permutation action

Let
$$T \in V^{\otimes n}$$
.

Recall the definition of invariants. $GL(V) \times GL(W) \times GL(U)$ is a group \rightarrow representation theory!

Definition — Restriction semi-invariant

We say a function $f \colon V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when

$$f((A \otimes B \otimes C)T) = 0 \iff f(T) = 0 \text{ for all invertible } (A, B, C) \in GL(V) \times GL(W) \times GL(U).$$

Next week: Schur–Weyl duality. Two group representations will be essential:

Definition — The diagonal action

Let $T \in V^{\otimes n}$.

Definition — The permutation action

Let $T \in V^{\otimes n}$.

Recall the definition of invariants. $GL(V) \times GL(W) \times GL(U)$ is a group \rightarrow representation theory!

Definition — Restriction semi-invariant

We say a function $f \colon V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when

$$f((A \otimes B \otimes C)T) = 0 \iff f(T) = 0 \text{ for all invertible } (A, B, C) \in GL(V) \times GL(W) \times GL(U).$$

Next week: Schur–Weyl duality. Two group representations will be essential:

Definition — The diagonal action

Let $T \in V^{\otimes n}$. Then $g \in GL(V)$ acts on T as

$$g \cdot T = (\underbrace{g \otimes \cdots \otimes g}_{n \text{ times}}) T$$

Definition — The permutation action

Let $T \in V^{\otimes n}$.

$$V^{\otimes n} := \underbrace{V \otimes \cdots \otimes V}_{n \text{ times}}$$

Recall the definition of invariants. $GL(V) \times GL(W) \times GL(U)$ is a group \rightarrow representation theory!

Definition — Restriction semi-invariant

We say a function $f: V \otimes W \otimes U \to \mathbb{R}$ is an **semi-invariant** when

$$f((A \otimes B \otimes C)T) = 0 \iff f(T) = 0 \text{ for all invertible } (A, B, C) \in GL(V) \times GL(W) \times GL(U).$$

Next week: Schur–Weyl duality. Two group representations will be essential:

Definition — The diagonal action

Let $T \in V^{\otimes n}$. Then $g \in GL(V)$ acts on T as

$$g \cdot T = (\underbrace{g \otimes \cdots \otimes g}_{n \text{ times}}) T$$

Definition — The permutation action

Let $T \in V^{\otimes n}$. Then $\pi \in S_n$ acts on T by permuting the tensor factors.

where
$$V^{\otimes n} := \underbrace{V \otimes \cdots \otimes V}_{n \text{ times}}$$

Definition — Symmetric tensors

We call a tensor $T \in V^{\otimes n}$ symmetric when $\pi \cdot T = T$ for all $\pi \in S_n$.

Definition — Symmetric tensors

We call a tensor $T \in V^{\otimes n}$ symmetric when $\pi \cdot T = T$ for all $\pi \in S_n$.

Most tensors are not symmetric, e.g. $e_1 \otimes e_1 \otimes e_2$, as applying (13) gives $e_2 \otimes e_1 \otimes e_1$.

Definition — Symmetric tensors

We call a tensor $T \in V^{\otimes n}$ symmetric when $\pi \cdot T = T$ for all $\pi \in S_n$.

Most tensors are not symmetric, e.g. $e_1 \otimes e_1 \otimes e_2$, as applying (13) gives $e_2 \otimes e_1 \otimes e_1$. *Examples:*

$$v \otimes \cdots \otimes v$$

Definition — Symmetric tensors

We call a tensor $T \in V^{\otimes n}$ symmetric when $\pi \cdot T = T$ for all $\pi \in S_n$.

Most tensors are not symmetric, e.g. $e_1 \otimes e_1 \otimes e_2$, as applying (13) gives $e_2 \otimes e_1 \otimes e_1$. *Examples:*

$$v \otimes \cdots \otimes v$$
 $\langle r \rangle := \sum_{i=1}^{n} e_i \otimes e_i \otimes \cdots \otimes e_i$

Definition — Symmetric tensors

We call a tensor $T \in V^{\otimes n}$ symmetric when $\pi \cdot T = T$ for all $\pi \in S_n$.

Most tensors are not symmetric, e.g. $e_1 \otimes e_1 \otimes e_2$, as applying (13) gives $e_2 \otimes e_1 \otimes e_1$. Examples: $v \otimes \cdots \otimes v \qquad \qquad \langle r \rangle \coloneqq \sum_{i=1}^r e_i \otimes e_i \otimes \cdots \otimes e_i$

$$T_{\mathsf{capset},1} := \sum_{\substack{a,b,c \in \mathbb{F}_3}} e_a \otimes e_b \otimes e_c$$

(a,b,c) a 3-term progression

Definition — Symmetric tensors

We call a tensor $T \in V^{\otimes n}$ symmetric when $\pi \cdot T = T$ for all $\pi \in S_n$.

Most tensors are not symmetric, e.g. $e_1 \otimes e_1 \otimes e_2$, as applying (13) gives $e_2 \otimes e_1 \otimes e_1$. Examples: $v \otimes \cdots \otimes v \qquad \qquad \langle r \rangle \coloneqq \sum_{i=1}^r e_i \otimes e_i \otimes \cdots \otimes e_i$

$$\mathcal{T}_{\mathsf{capset},1} \coloneqq \sum_{\substack{a,b,c \in \mathbb{F}_3 \ a,b,c \in \mathbb{F}_3}} e_a \otimes e_b \otimes e_c = \langle 3
angle + \sum_{\pi \in S_3} \pi \cdot (e_1 \otimes e_2 \otimes e_3)$$

(a,b,c) a 3-term progression

Definition — Symmetric tensors

We call a tensor $T \in V^{\otimes n}$ symmetric when $\pi \cdot T = T$ for all $\pi \in S_n$.

Most tensors are not symmetric, e.g. $e_1 \otimes e_1 \otimes e_2$, as applying (13) gives $e_2 \otimes e_1 \otimes e_1$. Examples: $v \otimes \cdots \otimes v \qquad \qquad \langle r \rangle \coloneqq \sum_{i=1}^r e_i \otimes e_i \otimes \cdots \otimes e_i$

$$T_{\mathsf{capset},1} := \sum_{\substack{a,b,c \in \mathbb{F}_3 \ (a,b,c) \text{ a 3-term progression}}} e_a \otimes e_b \overset{i=1}{\otimes} e_c = \langle 3
angle + \sum_{\pi \in S_3} \pi \cdot (e_1 \otimes e_2 \otimes e_3)$$

Definition — Symmetrization

Given $T \in V^{\otimes n}$, define its **symmetrization** as $\frac{1}{n!} \sum_{\pi \in S_n} \pi \cdot T$.

Definition — Symmetric tensors

We call a tensor $T \in V^{\otimes n}$ symmetric when $\pi \cdot T = T$ for all $\pi \in S_n$.

Most tensors are not symmetric, e.g. $e_1 \otimes e_1 \otimes e_2$, as applying (13) gives $e_2 \otimes e_1 \otimes e_1$. *Examples:*

$$\langle r
angle := \sum_{i=1} e_i \otimes e_i \otimes \cdots \otimes e_i$$
 $T_{\mathsf{capset},1} := \sum_{\substack{a,b,c \in \mathbb{F}_3 \ (a,b,c) \text{ a 3-term progression}}} e_a \otimes e_b \otimes e_c = \langle 3 \rangle + \sum_{\pi \in S_3} \pi \cdot (e_1 \otimes e_2 \otimes e_3)$

Definition — Symmetrization

Given $T \in V^{\otimes n}$, define its **symmetrization** as $\frac{1}{n!} \sum_{\pi \in S_n} \pi \cdot T$.

Facts:

Definition — Symmetric tensors

We call a tensor $T \in V^{\otimes n}$ symmetric when $\pi \cdot T = T$ for all $\pi \in S_n$.

Most tensors are not symmetric, e.g. $e_1 \otimes e_1 \otimes e_2$, as applying (13) gives $e_2 \otimes e_1 \otimes e_1$. Examples: $v \otimes \cdots \otimes v \hspace{1cm} \langle r \rangle \coloneqq \sum e_i \otimes e_i \otimes \cdots \otimes e_i$

$$T_{\mathsf{capset},1} \coloneqq \sum_{\substack{a,b,c \in \mathbb{F}_3 \ a,b,c \in \mathbb{F}_3}} e_a \otimes e_b \overset{i=1}{\otimes} e_c = \langle 3 \rangle + \sum_{\pi \in S_3} \pi \cdot (e_1 \otimes e_2 \otimes e_3)$$

(a,b,c) a 3-term progression

Given $T \in V^{\otimes n}$, define its symmetrization as $\frac{1}{n!} \sum_{\pi \in S_n} \pi \cdot T$.

Facts: • The set of symmetric tensors in $V^{\otimes n}$ form a vector space.

Symmetric tensors

Definition — Symmetric tensors

We call a tensor $T \in V^{\otimes n}$ symmetric when $\pi \cdot T = T$ for all $\pi \in S_n$.

Most tensors are not symmetric, e.g. $e_1 \otimes e_1 \otimes e_2$, as applying (13) gives $e_2 \otimes e_1 \otimes e_1$. Examples: $v \otimes \cdots \otimes v \qquad \qquad \langle r \rangle \coloneqq \sum_{i=1}^r e_i \otimes e_i \otimes \cdots \otimes e_i$

$$T_{\mathsf{capset},1} \coloneqq \sum_{\substack{a,b,c \in \mathbb{F}_3 \ (a,b,c) \text{ a 3-term progression}}} e_a \otimes e_b \otimes e_c = \langle 3 \rangle + \sum_{\pi \in S_3} \pi \cdot (e_1 \otimes e_2 \otimes e_3)$$

Definition — Symmetrization

Given $T \in V^{\otimes n}$, define its **symmetrization** as $\frac{1}{n!} \sum_{\pi \in S_n} \pi \cdot T$.

Facts: • The set of symmetric tensors in $V^{\otimes n}$ form a vector space.

• Symmetrization acts as a linear projector onto this subspace.

Symmetric tensors

Definition — Symmetric tensors

We call a tensor $T \in V^{\otimes n}$ symmetric when $\pi \cdot T = T$ for all $\pi \in S_n$.

Most tensors are not symmetric, e.g. $e_1 \otimes e_1 \otimes e_2$, as applying (13) gives $e_2 \otimes e_1 \otimes e_1$. *Examples:*

$$\langle r
angle := \sum_{i=1}^{} e_i \otimes e_i \otimes \cdots \otimes e_i$$
 $T_{\mathsf{capset},1} := \sum_{\substack{a,b,c \in \mathbb{F}_3 \ (a,b,c) \text{ a 3-term progression}}} e_a \otimes e_b \otimes e_c = \langle 3 \rangle + \sum_{\pi \in S_3} \pi \cdot (e_1 \otimes e_2 \otimes e_3)$

Definition — Symmetrization

Given $T \in V^{\otimes n}$, define its **symmetrization** as $\frac{1}{n!} \sum_{\pi \in S_n} \pi \cdot T$.

Facts: • The set of symmetric tensors in $V^{\otimes n}$ form a vector space.

- Symmetrization acts as a linear projector onto this subspace.
- The diagonal action of GL(V) leaves this subspace invariant.

Definition — Antisymmetric tensors

We call a tensor $T \in V^{\otimes n}$ antisymmetric when $\pi \cdot T = \operatorname{sgn}(\pi)T$ for all $\pi \in S_n$.

Definition — Antisymmetric tensors

We call a tensor $T \in V^{\otimes n}$ antisymmetric when $\pi \cdot T = \operatorname{sgn}(\pi)T$ for all $\pi \in S_n$.

Examples:

$$e_1\otimes e_2-e_2\otimes e_1$$

Definition — Antisymmetric tensors

We call a tensor $T \in V^{\otimes n}$ antisymmetric when $\pi \cdot T = \operatorname{sgn}(\pi)T$ for all $\pi \in S_n$.

Examples:

$$e_1\otimes e_2-e_2\otimes e_1$$

$$e_1 \otimes e_2 \otimes e_3 - e_1 \otimes e_3 \otimes e_2 + e_2 \otimes e_3 \otimes e_1 - e_2 \otimes e_1 \otimes e_3 + e_3 \otimes e_1 \otimes e_2 - e_3 \otimes e_2 \otimes e_1$$

Definition — Antisymmetric tensors

We call a tensor $T \in V^{\otimes n}$ antisymmetric when $\pi \cdot T = \operatorname{sgn}(\pi)T$ for all $\pi \in S_n$.

Examples:

$$e_1\otimes e_2-e_2\otimes e_1$$

$$e_1 \otimes e_2 \otimes e_3 - e_1 \otimes e_3 \otimes e_2 + e_2 \otimes e_3 \otimes e_1 - e_2 \otimes e_1 \otimes e_3 + e_3 \otimes e_1 \otimes e_2 - e_3 \otimes e_2 \otimes e_1$$

Definition — Antisymmetrization & wedge product

Given $T \in V^{\otimes n}$, define its **antisymmetrization** as $\frac{1}{n!} \sum_{\pi \in S_n} \text{sgn}(\pi) \ \pi \cdot T$.

Definition — Antisymmetric tensors

We call a tensor $T \in V^{\otimes n}$ antisymmetric when $\pi \cdot T = \operatorname{sgn}(\pi) T$ for all $\pi \in S_n$.

Examples:

$$e_1\otimes e_2-e_2\otimes e_1$$

$$e_1 \otimes e_2 \otimes e_3 - e_1 \otimes e_3 \otimes e_2 + e_2 \otimes e_3 \otimes e_1 - e_2 \otimes e_1 \otimes e_3 + e_3 \otimes e_1 \otimes e_2 - e_3 \otimes e_2 \otimes e_1$$

Definition — Antisymmetrization & wedge product

Given $T \in V^{\otimes n}$, define its **antisymmetrization** as $\frac{1}{n!} \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \pi \cdot T$.

Given $v_1, \ldots, v_n \in V$, define their wedge product as

$$v_1 \wedge \cdots \wedge v_n \coloneqq \frac{1}{n!} \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \ \pi \cdot (v_1 \otimes \cdots \otimes v_n) \in V^{\otimes n}$$

Definition — Antisymmetric tensors

We call a tensor $T \in V^{\otimes n}$ antisymmetric when $\pi \cdot T = \operatorname{sgn}(\pi)T$ for all $\pi \in S_n$.

Examples:

$$e_1\otimes e_2-e_2\otimes e_1$$

$$e_1 \otimes e_2 \otimes e_3 - e_1 \otimes e_3 \otimes e_2 + e_2 \otimes e_3 \otimes e_1 - e_2 \otimes e_1 \otimes e_3 + e_3 \otimes e_1 \otimes e_2 - e_3 \otimes e_2 \otimes e_1$$

Definition — Antisymmetrization & wedge product

Given $T \in V^{\otimes n}$, define its antisymmetrization as $\frac{1}{n!} \sum_{\pi \in S_n} \text{sgn}(\pi) \ \pi \cdot T$.

Given $v_1, \ldots, v_n \in V$, define their **wedge product** as

$$v_1 \wedge \cdots \wedge v_n \coloneqq \frac{1}{n!} \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \ \pi \cdot (v_1 \otimes \cdots \otimes v_n) \in V^{\otimes n}$$

Facts:

Definition — Antisymmetric tensors

We call a tensor $T \in V^{\otimes n}$ antisymmetric when $\pi \cdot T = \operatorname{sgn}(\pi)T$ for all $\pi \in S_n$.

Examples:

$$e_1\otimes e_2-e_2\otimes e_1$$

$$e_1 \otimes e_2 \otimes e_3 - e_1 \otimes e_3 \otimes e_2 + e_2 \otimes e_3 \otimes e_1 - e_2 \otimes e_1 \otimes e_3 + e_3 \otimes e_1 \otimes e_2 - e_3 \otimes e_2 \otimes e_1$$

Definition — Antisymmetrization & wedge product

Given $T \in V^{\otimes n}$, define its **antisymmetrization** as $\frac{1}{n!} \sum_{\pi \in S_n} \text{sgn}(\pi) \ \pi \cdot T$.

Given $v_1, \ldots, v_n \in V$, define their **wedge product** as

$$v_1 \wedge \cdots \wedge v_n \coloneqq \frac{1}{n!} \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \ \pi \cdot (v_1 \otimes \cdots \otimes v_n) \ \in \ V^{\otimes n}$$

Facts: • The set of antisymmetric tensors in $V^{\otimes n}$ form a vector space.

Definition — Antisymmetric tensors

We call a tensor $T \in V^{\otimes n}$ antisymmetric when $\pi \cdot T = \operatorname{sgn}(\pi)T$ for all $\pi \in S_n$.

Examples:

$$e_1\otimes e_2-e_2\otimes e_1$$

$$e_1 \otimes e_2 \otimes e_3 - e_1 \otimes e_3 \otimes e_2 + e_2 \otimes e_3 \otimes e_1 - e_2 \otimes e_1 \otimes e_3 + e_3 \otimes e_1 \otimes e_2 - e_3 \otimes e_2 \otimes e_1$$

Definition — Antisymmetrization & wedge product

Given $T \in V^{\otimes n}$, define its **antisymmetrization** as $\frac{1}{n!} \sum_{\pi \in S_n} \text{sgn}(\pi) \ \pi \cdot T$.

Given $v_1, \ldots, v_n \in V$, define their **wedge product** as

$$v_1 \wedge \cdots \wedge v_n \coloneqq \frac{1}{n!} \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \ \pi \cdot (v_1 \otimes \cdots \otimes v_n) \in V^{\otimes n}$$

Facts: • The set of antisymmetric tensors in $V^{\otimes n}$ form a vector space.

• Antisymmetrization acts as a linear projector onto this subspace.

Definition — Antisymmetric tensors

We call a tensor $T \in V^{\otimes n}$ antisymmetric when $\pi \cdot T = \operatorname{sgn}(\pi)T$ for all $\pi \in S_n$.

Examples:

$$e_1\otimes e_2-e_2\otimes e_1$$

$$e_1 \otimes e_2 \otimes e_3 - e_1 \otimes e_3 \otimes e_2 + e_2 \otimes e_3 \otimes e_1 - e_2 \otimes e_1 \otimes e_3 + e_3 \otimes e_1 \otimes e_2 - e_3 \otimes e_2 \otimes e_1$$

Definition — Antisymmetrization & wedge product

Given $T \in V^{\otimes n}$, define its **antisymmetrization** as $\frac{1}{n!} \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \pi \cdot T$.

Given $v_1, \ldots, v_n \in V$, define their **wedge product** as

$$v_1 \wedge \cdots \wedge v_n := \frac{1}{n!} \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \ \pi \cdot (v_1 \otimes \cdots \otimes v_n) \in V^{\otimes n}$$

Facts: • The set of antisymmetric tensors in $V^{\otimes n}$ form a vector space.

- Antisymmetrization acts as a linear projector onto this subspace.
- $v_1 \wedge \cdots \wedge v_n = 0 \iff \{v_1, \ldots, v_n\}$ are linearly dependent. (hint: consider first $v_i = v_j$)

Slides will be available at the webpage: qi.rub.de/tensors_ss24.

That's it for today. Thanks!