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Tensors as multidimensional arrays

Starting point — Matrices

Let IF be a field. We can write a matrix M € F"™™ as
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First examples — The W and diagonal tensors

Tensors as multidimensional arrays

] ]
w” i

—w— —w—

i=1

r
T=ZV,—®W,'®U,': \\
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First examples — The W and diagonal tensors

Tensors as multidimensional arrays

Ul/ Ur
r [[\Wl—] [[—Wr‘]
T=> viow@u= [ +o T
i=1 \xvl\| Ve
| |
W = e ®e e + e e + e e
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First examples — The W and diagonal tensors

Tensors as multidimensional arrays
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First examples — The W and diagonal tensors

Tensors as multidimensional arrays
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First examples — The W and diagonal tensors

Tensors as multidimensional arrays

] )
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r
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Abstract tensors

Let V, W, U be finite dimensional vector spaces with respective bases {v;};, {w;};, {ux}«.

Definition — Abstract 3-tensor space (Straightforward to generalize to k-tensors)

We define a tensor vector space V® W ® U as the linear span of the (abstract) elements
{vi® w; & Uk}i,j,k
together with a map V x Wx U: (v,w, u) — v® w® u that is multilinear:
o Multilinearity I: (v+V)@w@u=vwQu+Vv @w®u
o Multilinearity II: (av) @w@u=a(vldw® u) for all « € F.

and similarly for the other components.

It is easy to check the outer product satisfies this!
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Kronecker product

You could also define:

Another example — Kronecker product

Given column vectors v € V, w € W. Define their Kronecker product by

ai
a
vXw=

an

Xw:=

aw

aw

anw

e VR W
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Kronecker product

You could also define:

Another example — Kronecker product

Given column vectors v € V, w € W. Define their Kronecker product by

ai

a
vXw=| | Klw:=

an

aw

aw

anw

e VR W

i.e. replacing each entry of v with a scaled copy of w, resulting in one very tall vector.

This also sasisfies the abstract definition!
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Maxim van den Berg



How to transform tensors — Linear operations

Take a 3-tensor T=)_.v;@w;@u; € V® W® U. (note: not basis elements anymore)
Let A: V=V, B:W— W, C:U-— U belinear maps.

Maxim van den Berg



How to transform tensors — Linear operations

Take a 3-tensor T=)_.v;@w;@u; € V® W® U. (note: not basis elements anymore)
Let A: V=V, B:W— W, C:U-— U belinear maps.

Definition — Applying linear maps

Define AR B® C

Maxim van den Berg



How to transform tensors — Linear operations

Take a 3-tensor T=)_.v;@w;@u; € V® W® U. (note: not basis elements anymore)
Let A: V=V, B:W— W, C:U-— U belinear maps.

Definition — Applying linear maps

Define A B C: VaWeU — VoW U by

Maxim van den Berg



How to transform tensors — Linear operations

Take a 3-tensor T=)_.v;@w;@u; € V® W® U. (note: not basis elements anymore)
Let A: V=V, B:W— W, C:U-— U belinear maps.

Definition — Applying linear maps

Define A BRC: VWU — VoW U by
(A B2 C)(vedwR u) = (Av) ® (Bw) @ (Cu)

Maxim van den Berg



How to transform tensors — Linear operations

Take a 3-tensor T=)_.v;@w;@u; € V® W® U. (note: not basis elements anymore)
Let A: V=V, B:W— W, C:U-— U belinear maps.

Define A BC: VWU — VoW e U by
(A B® C)(ve we u) = (Av) ® (Bw) ® (Cu)
(A B® C)T = Avi® Bw; ® Cuj

Maxim van den Berg



How to transform tensors — Linear operations

Take a 3-tensor T=)_.v;@w;@u; € V® W® U. (note: not basis elements anymore)
Let A: V=V, B:W— W, C:U-— U belinear maps.

Define A BC: VWU — VoW e U by
(A B® C)(ve we u) = (Av) ® (Bw) ® (Cu)
(A B® C)T = Avi® Bw; ® Cuj

Example: (3) == 2;11 e®e®e € C3P@C3®C3. Then

Maxim van den Berg



How to transform tensors — Linear operations

Take a 3-tensor T=)_.v;@w;@u; € V® W® U. (note: not basis elements anymore)
Let A: V=V, B:W— W, C:U-— U belinear maps.

Define A BC: VWU — VoW e U by
(A B® C)(ve we u) = (Av) ® (Bw) ® (Cu)
(A B® C)T = Avi® Bw; ® Cuj

Example: (3) == 2;11 e®e®e € C3P@C3®C3. Then
(Bssl®l6%s]®[55%]) (3

Maxim van den Berg



How to transform tensors — Linear operations
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How to transform tensors — Linear operations

Take a 3-tensor T=)_.v;@w;@u; € V® W® U. (note: not basis elements anymore)
Let A: V=V, B:W— W, C:U-— U belinear maps.

Definition — Applying linear maps
Define A BC: VWU — VoW e U by
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How to transform tensors — Linear operations

Take a 3-tensor T=)_.v;@w;@u; € V® W® U. (note: not basis elements anymore)
Let A: V=V, B:W— W, C:U-— U belinear maps.
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Restriction

Definition — Applying linear maps

Let A: V=V, B:W— W, C: U-— U belinear maps. Then
(A®B®C)Zvi®Wi®Ui:ZAVi®BWi®CUi

Maxim van den Berg



Restriction

Definition — Applying linear maps

Let A: V=V, B:W— W, C: U-— U belinear maps. Then
(A®B®C)Zvi®Wi®Ui:ZAVi®BWi®CUi

Take 3-tensors Te V@ W@ Uand Se Vo W @ U’

Maxim van den Berg



Definition — Applying linear maps

Let A: V=V, B:W— W, C: U-— U belinear maps. Then
(A®B®C)Zvi®Wi®Ui:ZAVi®BWi®CUi

Take 3-tensors Te V@ W@ Uand Se Vo W @ U’

Definition — Restriction

We say T restricts to S, and write T > S, whenever there exists linear maps A, B, C such that
(A B C)T=S

Maxim van den Berg
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Definition — Applying linear maps

Let A: V=V, B:W— W, C: U-— U belinear maps. Then
(A®B®C)Zvi®Wi®Ui=ZAVi®BWi®CUi

Take 3-tensors Te V@ W@ Uand Se Vo W @ U’

Definition — Restriction

We say T restricts to S, and write T > S, whenever there exists linear maps A, B, C such that

(A B C)T=S

Example: the previous example shows (3) > W.
Remark: Restriction on matrices (2-tensors) is left-right multiplication, since

(A B)(v® w) = Av® Bw= Av(Bw)" = A(w")B".
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Matrix multiplication and Bilinear maps

MM,,: ]ann X ]ann - ]Fn><n
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Standard algorithm: O(n?).
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Matrix multiplication and Bilinear maps

MMn: ]Fn><n X ]ann - ]Fan
Standard algorithm: O(n®). Best bounds: O(n¥) with w € [2, 2.371552].

Central question — Matrix multiplication

How many multiplications (between inputs) are needed to do n x n matrix multiplication?

Consider bilinear maps V x W — U, with {v;};, {w;}; and {uk}« bases. Claim:

Proposition — Bilinear map/Tensor equivalence

{bilinear maps Vx W— U} = V* @ W*® U:

i J
o Then we write f(v;, w;) = Z ( upf(vi, w;) ) Uy
k A
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Matrix multiplication as a tensor

MMn c (]ann)* ® (ann)* ®]Fn><n

Take double indices (i,i"), (j, '), (k, k"),

and the standard matrix basis E;j» = eje

. ] =Esp
i
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Matrix multiplication as a tensor

MM, € (F™")* @ (F™")* @ F"™<" (k k') slice

i 10 0 0]

Take double indices (i,i"), (j, '), (k, k"), 1 1) 0010
. . . = Esp L1 119 0 0 of

and the standard matrix basis E;j» == eje; . e 00 0 0
£ I [0 1 0 0]

T ijo mr= 000 1
MM"(E"”’,’EJ.J,):Eivi’Ej’j,:ei(e"’ej)ejI:{OU e|Se (172): 0 0 0 O ’

0 0 0 0

. _ _ [0 0 0 0]
Bxample (n = 2): MMa([38].[33]) = [33] = MM ([83].[89]) vooe
So " 0010
ii1),00). (k") = Bk (MM"(E“” Ef’f’)> - :

0000

1 ifi=ki'=jj =k 0000

:{0 III o 22: 1o 10 0

else
000 1
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Bilinear complexity

Question: How many multiplications do we need? <= What is the tensor rank of MM,,?
Idea: Compare with a bilinear map for which we know.

Define the diagonal bilinear map / tensor as

X1y1 r ,
f,(X,y) = :Zx,-y;e,- — <I’> = Ze;@e;@e; c FFF QF"
i=1

XrYr . =1
Fact: if we have a restriction MM, < (r), then MM, needs < r multiplications.

Definition — Tensor rank

Given a 3-tensor T, we define its (tensor) rank as
R(T) =min{r | T<(n},

i.e. the size of the smallest diagonal tensor that restricts to T.
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Outlook — Tensor rank and matrix multiplication

Definition — Tensor rank

Given a 3-tensor T, we define its (tensor) rank as

R(T) =min{r | T<(r)}

Central question — Tensor rank of matrix multiplication

What is R(MM,,)?

Example — Naive MM, and [Strassen 1969]

Naive algorithm: MM, < (8) Strassen: R(MM,) =7
This is just the beginning of the story. In this seminar we will /might see:
o A session on tensor rank o Asymptotic aspects
o A session on border bank o Student topic: Schénhage's 7-theorem
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Quantum states

Definition — Quantum multipartite systems and states

o We define a (single-partite) quantum system as a Hilbert space C".

o We define a multi-partite quantum systems as the tensor product of such systems.
E.g. a quantum system with three parties is given by C™ @ C™ ® C".

o We define a quantum state as an element T of a quantum system with || T[> = 1.

Example — Three qubits

A qubit is the system C2. Examples of states: [§],[9] and [+) == % [1] (superposition).
Three parties can each have a qubit. Their shared system is C? ® C? ® C2?. Examples of states:
(2 1

DN+ |+ —=—(a1 Qe+ ®
[+) ® |+) ® |+) \/52(111e2e2e2)
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Quantum states

Definition — Quantum multipartite systems and states

o We define a (single-partite) quantum system as a Hilbert space C".

o We define a multi-partite quantum systems as the tensor product of such systems.
E.g. a quantum system with three parties is given by C™ @ C™ ® C".

o We define a quantum state as an element T of a quantum system with || T[> = 1.

Example — Three qubits

A qubit is the system C2. Examples of states: [§],[9] and [+) == % [1] (superposition).
Three parties can each have a qubit. Their shared system is C? ® C? ® C2?. Examples of states:

) ® [+ ® [4) %=%<e1®el®el+e2®e2®e2>

W 1
=%(el®el®ez+e1®ez®e1+e2®el®e1)
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Quantum states — Intuition

Example — Three qubits

A qubit is the system C2. Examples of states: [§],[9] and [+) == % [1] (superposition).

Three parties can each have a qubit. Their shared system is C? ® C? ® C?. Examples of states:

2 1
+) ® |+) @ [+) <—>=—(e1®e1®e1+ez®ez®ez)
V2 V2
W 1
%=%(el®el®ez+e1®ez®e1+ez®e1®e1)
&Bob
C2
C? C?

Alice Charlie
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Quantum states — Intuition

Example — Three qubits

A qubit is the system C2. Examples of states: [§],[9] and [+) == % [1] (superposition).

Three parties can each have a qubit. Their shared system is C? ® C? ® C?. Examples of states:

[+ @[+ ®[+) <2—>=i(e1®e1®e1+e2®e2®e2)
V2 V2

w 1
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Intuition:
o Three parties Alice, Bob and Charlie share state (2) /v/2. &BOb

They can “interact” only with their qubit. o
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Alice Charlie
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A qubit is the system C2. Examples of states: [§],[9] and [+) == % [1] (superposition).
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Quantum states — Intuition

Example — Three qubits

A qubit is the system C2. Examples of states: [§],[9] and [+) == % [1] (superposition).
Three parties can each have a qubit. Their shared system is C? ® C? ® C?. Examples of states:

+) ® |+) Q |[+) 2 _ 1(e ReRe+ee®e)
N 1 1 1
W
A f(e1®e1®e2+e1®e2®e1+e2®e1®e1)
Intuition: Bob
o Three parties Alice, Bob and Charlie share state (2) /v/2. & ©
They can “interact” only with their qubit. o
o Alice “measures”: the state collapses to outcome e; or e;.
C? C?

o If Alice outcomes is e;.
Alice Charlie
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Quantum states — Intuition

Example — Three qubits

A qubit is the system C2. Examples of states: [§],[9] and [+) == % [1] (superposition).

Three parties can each have a qubit. Their shared system is C? ® C? ® C?. Examples of states:

+) ® |+) Q |[+) 2 _ 1(e ReRe+ee®e)
N 1 1 1
W
A f(e1®e1®e2+e1®e2®e1+e2®e1®e1)
Intuition: Bob
o Three parties Alice, Bob and Charlie share state (2) /v/2. & ©
They can “interact” only with their qubit. o
o Alice “measures”: the state collapses to outcome e; or e;.
C? C?

o If Alice outcomes is e;. Then Bob's and Charlie’s qubits are
now in state e; too. This phenomenon is entanglement. Alice Charlie
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Entanglement

Takeaway — Quantum entanglement

Entanglement in quantum systems is modelled by tensors over C.

o Entanglement is a vital resource for many quantum computing applications.
o Different types are possible. Example: (2) /v/2 and W/+/3.

Central question — Quantum entanglement

Can we classify the different types of entanglement?
Can we classify the equivalence classes and their relations under restriction?

o Intuition: Entanglement cannot increase under local operations.

o In its most general form, this is restriction.

o Physical interpretation: SLOCC (Stochastic Local Operations and Classical
Communication) transformations.

Definition — Equivalence classes under restriction

We write T ~ S whenever there are restrictions T> Sand T < S.



Example — The W state and the diagonal state of order 3

o We know (3) > W. Claim: (3) =~ W, as (3) £ W.
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We say a function f: {3-tensors} — R is monotone when S< T = £(S) < f(T).
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Example — The W state and the diagonal state of order 3

o We know (3) > W. Claim: (3) = W, as (3) £ W. We use a restriction monotone.

Definition — Restriction monotone

We say a function f: {3-tensors} — R is monotone when S< T = £(S) < f(T).

Theorem — Flattening ranks

Given T € V® W® U we can consider T as a matrix My € V® (W® U), and compute matrix
rank. We call this the 1st flattening rank R;. Then Ry, Ry, R3 are restriction monotones.

Ri(W) =rank(e; @ (e, M)+ e @ (2Xe) + & ® (e Kep))
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Example — The W state and the diagonal state of order 3

o We know (3) > W. Claim: (3) = W, as (3) £ W. We use a restriction monotone.

Definition — Restriction monotone

We say a function f: {3-tensors} — R is monotone when S< T = £(S) < f(T).

Theorem — Flattening ranks

Given T € V® W® U we can consider T as a matrix My € V® (W® U), and compute matrix
rank. We call this the 1st flattening rank R;. Then Ry, Ry, R3 are restriction monotones.

Ri(W) =rank(e; @ (e, M)+ e @ (2Xe) + & ® (e Kep))

—rank( (3] 2 [§] + 1o 8]+ 1912 [§])
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Example — The W state and the diagonal state of order 3

o We know (3) > W. Claim: (3) = W, as (3) £ W. We use a restriction monotone.

Definition — Restriction monotone

We say a function f: {3-tensors} — R is monotone when S< T = £(S) < f(T).

Theorem — Flattening ranks

Given T € V® W® U we can consider T as a matrix My € V® (W® U), and compute matrix
rank. We call this the 1st flattening rank R;. Then Ry, Ry, R3 are restriction monotones.

Ri(W) =rank(e; @ (e, M)+ e @ (2Xe) + & ® (e Kep))

=rank( [3] @ [3] + 31 [§] + 127 [B] ) = ramk 23
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Example — The W state and the diagonal state of order 3

o We know (3) > W. Claim: (3) = W, as (3) £ W. We use a restriction monotone.

Definition — Restriction monotone

We say a function f: {3-tensors} — R is monotone when S< T = £(S) < f(T).
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Example — The W state and the diagonal state of order 3

o We know (3) > W. Claim: (3) = W, as (3) £ W. We use a restriction monotone.

Definition — Restriction monotone

We say a function f: {3-tensors} — R is monotone when S< T = £(S) < f(T).

Theorem — Flattening ranks

Given T € V® W® U we can consider T as a matrix My € V® (W® U), and compute matrix
rank. We call this the 1st flattening rank R;. Then Ry, Ry, R3 are restriction monotones.

Proof: Restriction (A®@ B® C)T becomes left-right matrix multiplication (A)M+(BX C)*. O
Ri(W) =rank(e; @ (e, M)+ e @ (2Xe) + & ® (e Kep))

—rank( (3@ |§] + [3)@ |§] < 1919 |§] ) = rank [32

6] =2
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Example — The W state and the diagonal state of order 3

o We know (3) > W. Claim: (3) = W, as (3) £ W. We use a restriction monotone.

Definition — Restriction monotone

We say a function f: {3-tensors} — R is monotone when S< T = £(S) < f(T).

Theorem — Flattening ranks

Given T € V® W® U we can consider T as a matrix My € V® (W® U), and compute matrix
rank. We call this the 1st flattening rank R;. Then Ry, Ry, R3 are restriction monotones.

Proof: Restriction (A®@ B® C)T becomes left-right matrix multiplication (A)M+(BX C)*. O
Ri(W) =rank(e; @ (e, M)+ e @ (2Xe) + & ® (e Kep))

HEIOEHEIGE H RSO HES.
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Example — The W state and the diagonal state of order 3

o We know (3) > W. Claim: (3) = W, as (3) £ W. We use a restriction monotone.
o We say: (3) /+/3 contains strictly more entanglement than W/+/3.

Definition — Restriction monotone

We say a function f: {3-tensors} — R is monotone when S< T = £(S) < f(T).

Theorem — Flattening ranks

Given T € V® W® U we can consider T as a matrix My € V® (W® U), and compute matrix
rank. We call this the 1st flattening rank R;. Then Ry, Ry, R3 are restriction monotones.

Proof: Restriction (A®@ B® C)T becomes left-right matrix multiplication (A)M+(BX C)*. O
Ri(W) =rank(e; @ (e, M)+ e @ (2Xe) + & ® (e Kep))

HEIOEHEIGE H RSO HES.
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Example — The W state and the diagonal state of order 2

o Claim: (2) =~ W.
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Example — The W state and the diagonal state of order 2

o Claim: (2) = W. In fact: (2) £ W and (2) # W. We will use an invariant.
o Both tensors live in C2 ® C? ® C?: equivalence implies restriction with invertible matrices.

Definition — Restriction semi-invariant

We say a function f: V@ W® U — R is an semi-invariant when
f(T)=0 < f((A®B® C)T) =0 for all invertible (A, B, C) € GL(V) x GL(W) x GL(UV).
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Example — The W state and the diagonal state of order 2

o Claim: (2) = W. In fact: (2) £ W and (2) # W. We will use an invariant.
o Both tensors live in C2 ® C? ® C?: equivalence implies restriction with invertible matrices.

Definition — Restriction semi-invariant

We say a function f: V@ W® U — R is an semi-invariant when
f(T)=0 < f((A®B® C)T) =0 for all invertible (A, B, C) € GL(V) x GL(W) x GL(UV).

Proposition — Hyperdeterminant/3-tangle

There exists an semi-invariant f for C? ® C2 @ C? with f((2)) # 0 = f(W). It is called the
hyperdeterminant or 3-tangle.
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Example — The W state and the diagonal state of order 2

o Claim: (2) = W. In fact: (2) £ W and (2) # W. We will use an invariant.
o Both tensors live in C2 ® C? ® C?: equivalence implies restriction with invertible matrices.

Definition — Restriction semi-invariant

We say a function f: V@ W® U — R is an semi-invariant when
f(T)=0 < f((A®B® C)T) =0 for all invertible (A, B, C) € GL(V) x GL(W) x GL(UV).

Proposition — Hyperdeterminant/3-tangle

There exists an semi-invariant f for C? ® C2 @ C? with f((2)) # 0 = f(W). It is called the
hyperdeterminant or 3-tangle.

Proof. We might see this as part of a student topic :)
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Example — The W state and the diagonal state of order 2

o Claim: (2) = W. In fact: (2) £ W and (2) # W. We will use an invariant.
o Both tensors live in C2 ® C? ® C?: equivalence implies restriction with invertible matrices.

e Thus: (2) /v/2 has a genuinly different type of entanglement than W/+/3.

Definition — Restriction semi-invariant

We say a function f: V@ W® U — R is an semi-invariant when
f(T)=0 < f((A®B® C)T) =0 for all invertible (A, B, C) € GL(V) x GL(W) x GL(UV).

Proposition — Hyperdeterminant/3-tangle

There exists an semi-invariant f for C? ® C2 @ C? with f((2)) # 0 = f(W). It is called the
hyperdeterminant or 3-tangle.

Proof. We might see this as part of a student topic :)
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Outlook — Quantum entanglement, monotones and invariants

Central question — Quantum entanglement

Can we classify equivalence under restriction, and determine (non-)existence of restrictions?
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Central question — Quantum entanglement

Can we classify equivalence under restriction, and determine (non-)existence of restrictions?

Definition — Restriction monotone
We say a function f: {3-tensors} — R is monotone when S< T —> £(S) < f(T).

Definition — Restriction semi-invariant

We say a function f: V@ W® U — R is an semi-invariant when
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Outlook — Quantum entanglement, monotones and invariants

Central question — Quantum entanglement

Can we classify equivalence under restriction, and determine (non-)existence of restrictions?

Definition — Restriction monotone
We say a function f: {3-tensors} — R is monotone when S< T —> £(S) < f(T).

Definition — Restriction semi-invariant

We say a function f: V@ W® U — R is an semi-invariant when
f(A® B® C)T) =0 <= f(T) =0 for all invertible (A, B, C) € GL(V) x GL(W) x GL(U).

Again just the beginning of the story. In this seminar we will/might see:
o Schur-Weyl duality, covariants o More monotones, (semi-)invariants
o The quantum functionals e Student topic: classification of classes in C? ® C? @ C?
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The cap set problem

Let F = Fs = Z/3Z.
A 3-term progression in F" is a sequence (a,a+ b, a+ 2b) € F" x F" x F".
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The cap set problem

Definition — Cap sets

Let F = F; = Z/3Z.

A 3-term progression in F" is a sequence (a,a+ b, a+ 2b) € F" x F" x F".

A C F" is called a cap set when no 3 distinct elements of A form a 3-term progression.

Example (n=12): A={[3],[3].[}]} isa cap set
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The cap set problem

Definition — Cap sets

Let F = F; = Z/3Z.

A 3-term progression in F" is a sequence (a,a+ b, a+ 2b) € F" x F" x F".

A C F" is called a cap set when no 3 distinct elements of A form a 3-term progression.
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Definition — Cap sets

Let F = F; = Z/3Z.

A 3-term progression in F" is a sequence (a,a+ b, a+ 2b) € F" x F" x F".
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Definition — Cap sets

Let F = F; = Z/3Z.

A 3-term progression in F" is a sequence (a,a+ b, a+ 2b) € F" x F" x F".

A C F" is called a cap set when no 3 distinct elements of A form a 3-term progression.
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o A bound O(3"/n) was known since 1995, by Alon and Dubiner.
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The cap set problem

Definition — Cap sets

Let F = F; = Z/3Z.

A 3-term progression in F" is a sequence (a,a+ b, a+ 2b) € F" x F" x F".

A C F" is called a cap set when no 3 distinct elements of A form a 3-term progression.

Example (n=2): A={[3],[3].[1]}isacapset, A’ ={[3].[3],[2%]} is not.

Motivating problem — Maximum size of cap sets
What is the maximum size of a cap set in terms of n?
Or: does there exists a C < 3 such that the size is O(C")?

o A bound O(3"/n) was known since 1995, by Alon and Dubiner.
o Whether an exponential improvement over 3" was possible became a big open problem.
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The cap set problem

Definition — Cap sets

Let F = F; = Z/3Z.

A 3-term progression in F" is a sequence (a,a+ b, a+ 2b) € F" x F" x F".

A C F" is called a cap set when no 3 distinct elements of A form a 3-term progression.

Example (n=2): A={[3],[3].[1]}isacapset, A’ ={[3].[3],[2%]} is not.

Motivating problem — Maximum size of cap sets
What is the maximum size of a cap set in terms of n?
Or: does there exists a C < 3 such that the size is O(C")?

o A bound O(3"/n) was known since 1995, by Alon and Dubiner.
o Whether an exponential improvement over 3" was possible became a big open problem.
o Settled with 2.756" in 2016 by Ellenberg & Gijswijt, based on work by Croot, Lev & Pach.
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The cap set problem

Definition — Cap sets

Let F = F; = Z/3Z.

A 3-term progression in F" is a sequence (a,a+ b, a+ 2b) € F" x F" x F".

A C F" is called a cap set when no 3 distinct elements of A form a 3-term progression.

Example (n=2): A={[3],[3].[1]}isacapset, A’ ={[3].[3],[2%]} is not.

Motivating problem — Maximum size of cap sets

What is the maximum size of a cap set in terms of n?
Or: does there exists a C < 3 such that the size is O(C")?

A bound O(3"/n) was known since 1995, by Alon and Dubiner.

o Whether an exponential improvement over 3" was possible became a big open problem.

o Settled with 2.756" in 2016 by Ellenberg & Gijswijt, based on work by Croot, Lev & Pach.
o We can reformulate this result in terms of tensors!
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The cap set tensor

Definition — The cap set tensor (or rather: the 3-term progression tensor)
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The cap set tensor

Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let a € F" = I label standard basis elements e, € F>".
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The cap set tensor

Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let a € F" = I} label standard basis elements e, € F>". We define the cap set tensor as

Tcapset,n = S F3 ® F3 ® F>
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The cap set tensor

Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let a € F" = I} label standard basis elements e, € F>". We define the cap set tensor as

Tcapset,n = S F3 ® F3 ® F>
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The cap set tensor

Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let a € F" = I} label standard basis elements e, € F>". We define the cap set tensor as

Teapset,n = S F*’ ® F*’ ® F*’

Intuition: The cap set tensor encodes all 3-term progressions.

0
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The cap set tensor

Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let a € F" = I} label standard basis elements e, € F>". We define the cap set tensor as

Teapset,n = Z €. RQep®e € F* ® F*’ ® F>

a,b,ccF"
(a,b,c) a 3-term progression

Intuition: The cap set tensor encodes all 3-term progressions.

0

¥
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The cap set tensor

Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let a € F" = I} label standard basis elements e, € F>". We define the cap set tensor as

Teapset,n = Z €. RQep®e € F* ® F*’ ® F>

a,b,ccF"
(a,b,c) a 3-term progression

Intuition: The cap set tensor encodes all 3-term progressions.

]F"/ Tcapset,l = <3> + Z 6 ® € & ek
— T (7.j,k) a permutation of (0,1,2)
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The cap set tensor

Definition — The cap set tensor (or rather: the 3-term progression tensor)

Let a € F" = I} label standard basis elements e, € F>". We define the cap set tensor as
Teapset,n = Z eaep e € F¥ ® F¥ ® F¥

a,b,ccF"
(a,b,c) a 3-term progression

Intuition: The cap set tensor encodes all 3-term progressions.

]F"/ Tcapset,l = <3> + Z 6 ® ej® €k
/—]F“‘ (7.j,k) a permutation of (0,1,2)

|n 100 Joo 1 [o10

F =11lo o 1|,{0 1 o],|1 0 0

| o1o|l |100] 001
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Subrank

Claim: A cap set A= {ai,...,am} C F" gives rise to a restriction Tcapset,n > (M).
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Subrank

Claim: A cap set A =1{ay,...,am} C F" gives rise to a restriction Teapset.n > (mM).
p s 5 g pset,

Intuition: The cap set tensor encodes all 3-term progressions.
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Subrank

Claim: A cap set A= {a1,...,an} C " gives rise to a restriction Teapset.n = (mM).
p yeees g pset,

0o

13

Intuition: The cap set tensor encodes all 3-term progressions.
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Subrank

Claim: A cap set A ={ay,...,an} C F" gives rise to a restriction

Tcapset,n > <m> .

0o
_F

i

Intuition: The cap set tensor encodes all 3-term progressions.
Restricting Tcapset,n to indices a, b,c € A C F" gives

n

lifandonlyifa=b=c F
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Subrank

Claim: A cap set A= {a1,...,an} C " gives rise to a restriction Teapset.n = (mM).
p yeees g pset,

0
Intuition: The cap set tensor encodes all 3-term progressions. /E]Fn
Restricting Tcapset,n to indices a, b,c € A C F" gives |

lifandonlyifa=b=c

Example: A= {[{].[3].[1]}
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Subrank

Claim: A cap set A= {ai,...,am} C F" gives rise to a restriction Tcapset,n > (M).

0o
Intuition: The cap set tensor encodes all 3-term progressions. /E]Fn
Restricting Tcapset,n to indices a, b,c € A C F" gives |
lifandonlyifa=b=c ]Fl

Example: A={[3],[4].[}]} S
1 0 00 OO O OTDO

A=1/0 0 001 00 0O

000 O0O0OOTU ODT1O
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Subrank

Claim: A cap set A= {ai,...,am} C F" gives rise to a restriction Tcapset,n > (M).

n-"
Intuition: The cap set tensor encodes all 3-term progressions. /E]Fn
Restricting Tcapset,n to indices a, b,c € A C F" gives |
n
lifandonlyifa=b=c ]Fl
Example: A = 0 1 1 012012012
p {18]. 1], [1]} 000111222
100 00O0OOO0OTO
(A®A® A) Teapset2 = (3) A=10 00 010000
000O0O0OOOT1IO

Maxim van den Berg



Subrank

Claim: A cap set A= {ai,...,am} C F" gives rise to a restriction Tcapset,n > (M).
0o
Intuition: The cap set tensor encodes all 3-term progressions. /E]Fn
Restricting Tcapset,n to indices a, b,c € A C F" gives |
]FI'I

lifandonlyifa=b=c

E le: A= {[0] [1] [1 012012012
xample: A= {[§],[3].[1]} 000111222
100000000

(A®A® A) Teapset2 = (3) A=10 00 010000
00000O0GO0TLO

Definition — Subrank

Given a 3-tensor T, we define its subrank as
Q(T)=max{q | (q) < T},



Subrank

Claim: A cap set A= {ai,...,am} C F" gives rise to a restriction Tcapset,n > (M).
0o
Intuition: The cap set tensor encodes all 3-term progressions. ¥ f

Restricting Tcapset,n to indices a, b,c € A C F" gives

=
3

lifandonlyifa=b=c |
A JfT01 [11 T1 012012012
Example: A= {[§].[3].[1]} 000111222
100000000
(A®A® A) Teapset2 = (3) A=10 00 010000
0000O0DO0GO0T10

Definition — Subrank Central question — Subrank of Tcapset.n

Given a 3-tensor T, we define its subrank as What is Q(Teapset.n)?
Q(T)=max{q | (q) < T},



Outlook — Combinatorics

Definition — Subrank Central question — Subrank of Tcapset,n

Given a 3-tensor T, we define its subrank as What is Q( Teapset.n)?
Q(T)=max{q | (q9) < T},

Maxim van den Berg



Outlook — Combinatorics

Definition — Subrank Central question — Subrank of Tcapset,n

Given a 3-tensor T, we define its subrank as What is Q( Teapset.n)?
Q(T)=max{q | (q9) < T},

o The maximum size of a cap set in F” is bounded by

Q( Tcapset,n)
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Outlook — Combinatorics

Definition — Subrank Central question — Subrank of Tcapset,n

Given a 3-tensor T, we define its subrank as What is Q( Teapset.n)?
Q(T)=max{q | (q9) < T},

o The maximum size of a cap set in F” is bounded by

Q( Teapset,n) < slicerank( Tcapset,n)
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Outlook — Combinatorics

Definition — Subrank Central question — Subrank of Tcapset,n

Given a 3-tensor T, we define its subrank as What is Q( Teapset.n)?
Q(T)=max{q | (q9) < T},

o The maximum size of a cap set in F” is bounded by

Q( Teapset,n) < slicerank( Tcapset,n) /= 2.756"
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Outlook — Combinatorics

Definition — Subrank Central question — Subrank of Tcapset,n

Given a 3-tensor T, we define its subrank as What is Q( Teapset.n)?
Q(T)=max{q | (q9) < T},
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Outlook — Combinatorics

Definition — Subrank Central question — Subrank of Tcapset,n

Given a 3-tensor T, we define its subrank as What is Q( Teapset.n)?
Q(T)=max{q | (q9) < T},

o The maximum size of a cap set in F” is bounded by
Q( Teapset,n) < slicerank( Tcapset,n) /= 2.756"

o Originally proven via an equivalent formulation using polynomials F” x F" x F" — F.

o There are many more problems! Other fields than I3, other arithmetic progressions, etc.

Once again again the beginning of the story. In this seminar we will/might see:
o A session on subrank o A general asymptotic formulation
e More upper bounds for subrank o Student topic: slice rank
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Rank and subrank

Definition — Subrank Definition — Rank

Given a 3-tensor T, we define its subrank as Given a 3-tensor T, we define its rank as

Q(T) =max{q | (q) < T}, R(T) == min{r | T<(n)}

Takeaway — The tensor world

Maxim van den Berg



Rank and subrank

Definition — Subrank Definition — Rank

Given a 3-tensor T, we define its subrank as Given a 3-tensor T, we define its rank as
Q(T)=max{q | (q) < T}, R(T) =min{r | T<(n}
* Q(T) <R(T).

Takeaway — The tensor world

Maxim van den Berg



Rank and subrank

Definition — Subrank Definition — Rank

Given a 3-tensor T, we define its subrank as Given a 3-tensor T, we define its rank as
Q(T)=max{q | (q) < T}, R(T) =min{r | T<(n}

* Q(T) < R(T).
Proof: Use a flattening rank to show (q) % (r) ifq>r. O

Takeaway — The tensor world

Maxim van den Berg



Rank and subrank

Definition — Subrank Definition — Rank

Given a 3-tensor T, we define its subrank as Given a 3-tensor T, we define its rank as
Q(T)=max{q | (q) < T}, R(T) =min{r | T<(n}

* Q(T) < R(T).
Proof: Use a flattening rank to show (q) % (r) ifq>r. O
o Q(T) #R(T), since (1) <W < (3) is the best we can do.

Takeaway — The tensor world

Maxim van den Berg



Rank and subrank

Definition — Subrank Definition — Rank

Given a 3-tensor T, we define its subrank as Given a 3-tensor T, we define its rank as
Q(T)=max{q | (q) < T}, R(T) =min{r | T<(n}

* Q(T) <R(T).
Proof: Use a flattening rank to show (q) % (r) ifq>r. O
o Q(T) #R(T), since (1) <W < (3) is the best we can do.
Proof idea: Use the hyperdeterminant to show W £ (2) and (2) £ W.

Takeaway — The tensor world

Maxim van den Berg



Rank and subrank

Definition — Subrank Definition — Rank

Given a 3-tensor T, we define its subrank as Given a 3-tensor T, we define its rank as
Q(T)=max{q | (q) < T}, R(T) =min{r | T<(n}

* Q(T) <R(T).

Proof: Use a flattening rank to show (q) % (r) ifq>r. O
o Q(T) #R(T), since (1) <W < (3) is the best we can do.

Proof idea: Use the hyperdeterminant to show W £ (2) and (2) £ W.
o For matrices, Q(M) = rank(M) = R(M)!

Takeaway — The tensor world

Maxim van den Berg



Rank and subrank

Definition — Subrank Definition — Rank

Given a 3-tensor T, we define its subrank as Given a 3-tensor T, we define its rank as
Q(T) =max{q | (q) < T}, R(T) =min{r | T<(n}

* Q(T) <R(T).
Proof: Use a flattening rank to show (q) % (r) ifq>r. O

o Q(T) #R(T), since (1) <W < (3) is the best we can do.
Proof idea: Use the hyperdeterminant to show W £ (2) and (2) £ W.

o For matrices, Q(M) = rank(M) = R(M)!
Proof: Restriction with (A ® B) is left-right multiplication AMB*. Set r:= rank(M).

Takeaway — The tensor world

Maxim van den Berg



Rank and subrank

Definition — Subrank Definition — Rank
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* Q(T) <R(T).
Proof: Use a flattening rank to show (q) % (r) ifq>r. O
o Q(T) #R(T), since (1) <W < (3) is the best we can do.
Proof idea: Use the hyperdeterminant to show W £ (2) and (2) £ W.
o For matrices, Q(M) = rank(M) = R(M)!

Proof: Restriction with (A ® B) is left-right multiplication AMB*. Set r:= rank(M).
Use Gaussian elimination to map M to I,.

Takeaway — The tensor world
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Rank and subrank

Definition — Subrank Definition — Rank

Given a 3-tensor T, we define its subrank as Given a 3-tensor T, we define its rank as
Q(T) =max{q | (q) < T}, R(T) =min{r | T<(n}
* Q(T) <R(T).
Proof: Use a flattening rank to show (q) % (r) ifq>r. O
o Q(T) #R(T), since (1) <W < (3) is the best we can do.
Proof idea: Use the hyperdeterminant to show W £ (2) and (2) £ W.
o For matrices, Q(M) = rank(M) = R(M)!

Proof: Restriction with (A ® B) is left-right multiplication AMB*. Set r:= rank(M).
Use Gaussian elimination to map M to I,. Use M = Z,le Vi ® w; to map I, to M. [
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Rank and subrank

Definition — Subrank Definition — Rank

Given a 3-tensor T, we define its subrank as Given a 3-tensor T, we define its rank as
Q(T)=max{q | (q) < T}, R(T) =min{r | T<(n}

* Q(T) < R(T).
Proof: Use a flattening rank to show (q) % (r) ifq>r. O
o Q(T) #R(T), since (1) <W < (3) is the best we can do.
Proof idea: Use the hyperdeterminant to show W £ (2) and (2) £ W.
o For matrices, Q(M) = rank(M) = R(M)!
Proof: Restriction with (A ® B) is left-right multiplication AMB*. Set r:= rank(M).
Use Gaussian elimination to map M to I,. Use M = Z,le Vi ® w; to map I, to M. [

Takeaway — The tensor world

The tensor world is a lot more complicated & interesting than the matrix world!
We use ranks (rank, subrank, slice rank, ... ), monotones, invariants, etc.
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Group actions

Recall the definition of invariants.

Definition — Restriction semi-invariant

We say a function f: V@ W® U — R is an semi-invariant when
f((A® B® C)T) =0 <= f(T) =0 for all invertible (A, B, C) € GL(V) x GL(W) x GL(U).
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Group actions

Recall the definition of invariants. GL(V)xGL(W)xGL(U) is a group — representation theory!

Definition — Restriction semi-invariant

We say a function f: V@ W® U — R is an semi-invariant when
f((A® B® C)T) =0 <= f(T) =0 for all invertible (A, B, C) € GL(V) x GL(W) x GL(U).

Next week: Schur-Weyl duality. Two group representations will be essential:

Definition — The diagonal action Definition — The permutation action

Let Te V@ Then g€ GL(V) actson T as Let Te V&,
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n times

where VO — V...V
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n times
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Group actions

Recall the definition of invariants. GL(V)xGL(W)xGL(U) is a group — representation theory!

Definition — Restriction semi-invariant

We say a function f: V@ W® U — R is an semi-invariant when
f((A® B® C)T) =0 <= f(T) =0 for all invertible (A, B, C) € GL(V) x GL(W) x GL(U).

Next week: Schur-Weyl duality. Two group representations will be essential:

Definition — The diagonal action Definition — The permutation action

Let Te V@ Then g€ GL(V) actson T as Let Te V®". Then m € S, acts on T by

g T=(g® -0g)T permuting the tensor factors.
~————

n times

where VO — V...V
—————

n times
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Symmetric tensors

Definition — Symmetric tensors

We call a tensor T € V®" symmetric when 7- T =T for all 7 € S,,.
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We call a tensor T € V®" symmetric when 7- T =T for all 7 € S,,.

Most tensors are not symmetric, e.g. €1 ® e; ® e, as applying (13) gives e, ® ; ® e;.
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Symmetric tensors

Definition — Symmetric tensors
We call a tensor T € V®" symmetric when 7- T =T for all 7 € S,,.
Most tensors are not symmetric, e.g. €1 ® e; ® e, as applying (13) gives e, ® ; ® e;.

Examples:
V® . ® v
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Definition — Symmetric tensors

We call a tensor T € V®" symmetric when 7- T =T for all 7 € S,,.
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Definition — Symmetric tensors

We call a tensor T € V®" symmetric when 7- T =T for all 7 € S,,.
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Symmetric tensors

Definition — Symmetric tensors

We call a tensor T € V®" symmetric when 7- T =T for all 7 € S,,.

Most tensors are not symmetric, e.g. €1 ® e; ® e, as applying (13) gives e, ® ; ® e;.
Examples: !

VR @ v Nn=Y e0ee e
i=1
Tcapset,l = Z eV ep®e = <3> + Z - (61 R e ® 63)
a,b,celf3 TES;

(a,b,c) a 3-term progression

Definition — Symmetrization

Given T € V®", define its symmetrization as % dones, ™ T

Facts: » The set of symmetric tensors in V®" form a vector space.
o Symmetrization acts as a linear projector onto this subspace.
o The diagonal action of GL(V/) leaves this subspace invariant.
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Antisymmetric tensors

Definition — Antisymmetric tensors

We call a tensor T € V®" antisymmetric when 7 - T = sgn(7) T for all 7 € S,,.
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Definition — Antisymmetric tensors

We call a tensor T € V®" antisymmetric when 7 - T = sgn(7) T for all 7 € S,,.

Examples: aR¥e—ea®e
a¥ea-—alaleataldalea—aealatallea@ea—agea®e

Definition — Antisymmetrization & wedge product
Given T € V®", define its antisymmetrization as & > ¢ sgn(m) 7 - T.

Given vi,...,v, € V, define their wedge product as

1
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Antisymmetric tensors

Definition — Antisymmetric tensors

We call a tensor T € V®" antisymmetric when 7 - T = sgn(7) T for all 7 € S,,.

Examples: aR¥e—ea®e
a¥ea-—alaleataldalea—aealatallea@ea—agea®e

Definition — Antisymmetrization & wedge product
Given T € V®", define its antisymmetrization as & > ¢ sgn(m) 7 - T.
Given vi,...,v, € V, define their wedge product as
1
ViA- AV, = o ngn(w) TR --®v,) € V&
TES,

Facts: o The set of antisymmetric tensors in V®" form a vector space.
o Antisymmetrization acts as a linear projector onto this subspace.
e viA---Av, =0 <= {vi,...,v,} are linearly dependent. (hint: consider first v; = v;)
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Slides will be available at the webpage: qi.rub.de/tensors_ss24.
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Slides will be available at the webpage: qi.rub.de/tensors_ss24.

That's it for today. Thanks!
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